шјес
cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL (NEW)
MATHEMATICS - UNIT 4 APPLIED MATHEMATICS B 1300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A2 Mathematics Unit 4: Applied Mathematics B

Solutions and Mark Scheme Summer 2018

SECTION A - Statistics

Qu. No.	Solution	Mark	Notes
4(a)	Valid reason e.g.(Approximately) symmetrical, taller in the middle, tails off at the ends, etc	E1	Do not accept bell curve alone.
(b)(i)	$P(60 \leq X \leq 70)=0.26055$	M1	M1 for 0.26055 or $80 \times$ 'their probability'. Allow 20.84 or '20 or 21' Use of tables gives $P(60 \leq X<70)=0.2618$
	Predicted number $=21$	A1	
(ii)	$P(X \geq 90)=0.041518$ Predicted number $=3$	M1	Predicted number is 21 M1 for 0.041518 or $80 \times$ 'their probability'.
		A1	Allow 3.32 or '3 or 4' Use of tables gives $P(X \geq 90)=0.0418$ Predicted number is 3
(c)(i)	Valid comment e.g. 18 is smaller than (predicted) 21 and 6 is bigger than (predicted) 3 so may not be the best model.	E1	Must include reference to model not being ideal/could be improved AND comparison of predicted values and actual values.
(ii)	Model could be improved by increasing the variance/standard deviation. (This would 'flatten out' the curve. It would lower the middle and lift up the tails.)	E1	
(d)	Valid comment. e.g. May not be suitable since the weekly household expenditure on food in Northern Ireland may have a different distribution. e.g. May be suitable as Northern Ireland is part of the UK and has a similar socioeconomic status to Wales.	E1	
		[8]	

SECTION B - Mechanics

Q

6

Moments about centre
$8 g \times 1 \cdot 4+2 g \times x=15 g \times 0 \cdot 8$
$11 \cdot 2+2 x=12$
$2 x=0 \cdot 8$
$x=0.4$
$A D=2-0 \cdot 4=1 \cdot 6(\mathrm{~m})$

Mark Notes

M1 dim correct equation No missing forces

B1 Any correct moment with pivot clearly indicated. correct equation

A1 cao
Total [4]

Alternative solution

Moments about $A($ or $B, C, D, E)$

$8 g \times 0 \cdot 6+2 g \times x+15 g \times 2 \cdot 8=2 R$	(M1) (B1)	No missing forces Any correct moment with pivot clearly indicated.
$R=(8+2+15) g$		
$4 \cdot 8+2 x+42=50$	$(=25 g=245)$	(A1)

7(a) $\quad R=k v$
$0 \cdot 08=0 \cdot 2 k$
$k=0 \cdot 4$
N2L applied to object, upwards positive
$0-0 \cdot 5 g-R=0 \cdot 5 a, \quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
$\frac{\mathrm{d} v}{\mathrm{~d} t}=-9 \cdot 8-0 \cdot 8 v$

7(b) $\quad \int \frac{\mathrm{d} v}{9 \cdot 8+0 \cdot 8 v}=-\int \mathrm{d} t$
$\frac{1}{0 \cdot 8} \ln |9 \cdot 8+0 \cdot 8 v|=-t+(C)$
when $t=0, v=24$
$C=\frac{1}{0.8} \ln |29|$
$-0 \cdot 8 t=\ln \left|\frac{9 \cdot 8+0 \cdot 8 v}{29}\right|$
$29 e^{-0 \cdot 8 t}=9 \cdot 8+0 \cdot 8 v$
$0 \cdot 8 v=29 e^{-0 \cdot 8 t}-9 \cdot 8$
$v=36 \cdot 25 e^{-0 \cdot 8 t}-12 \cdot 25$

7(c) At highest point, $v=0$
$t=1 \cdot 25(\ln |29|-\ln |9 \cdot 8|)$
$t=1 \cdot 356(\mathrm{~s})$

Mark Notes

B1
M1 dim correct eqn, all forces

A1 convincing
(3)

M1

A1
m1

A1
m1

A1 cao
(6)

M1
used

A1
cao
(2)

Q
Solution
8(a)

$R=60 g \cos 20^{\circ}$
$F=0.3 \times R \quad(=165 \cdot 761 \ldots)$

Apply N2L to object, downwards +ve
$60 g \sin 20^{\circ}-F-15=60 a$
$a=0 \cdot 3391 \quad\left(\mathrm{~ms}^{-2}\right)$

8(b) Resultant tractive force up plane
$=350-60 g \sin 20^{\circ}=148 \cdot 892$

Limiting friction $=165 \cdot 761 \ldots$

Resultant tractive force < Limiting friction

Object does not move up the plane.

Total [9]

Alternative solution to (b)

(Maximum) force that can be applied up the slope (without object slipping)
$=60 g \sin 20^{\circ}+0.3 \times 60 g \cos 20^{\circ}=366 \cdot 86 \ldots$
$T=350<366 \cdot 86 \ldots$

Object does not move up the plane.
(3)

Mark Notes

B1 si

B1 si

$$
\left(F=18 g \cos 20^{\circ}\right)
$$

dim correct equ, all forces
-1 each error
cao
(6)

M1

A1
dim correct, all forces

convincing

)

Q
Solution
9(a) For P,
initial horizontal velocity $=24 \cdot 5 \cos 30^{\circ}$

$$
=12 \cdot 25 \sqrt{3}
$$

Initial vertical velocity $=24.5 \sin 30^{\circ}$

$$
=12 \cdot 25
$$

For time of flight, use $s=u t+\frac{1}{2} a t^{2}$ with
$s=0, a=(\pm) 9 \cdot 8, u=(\pm) 12 \cdot 25$
$0=12 \cdot 25 t-4 \cdot 9 t^{2}$
$t=2 \cdot 5$
Range, $R=12 \cdot 25 \sqrt{3} \times 2 \cdot 5=30 \cdot 623 \sqrt{3}$

$$
=53(\cdot 044)(\mathrm{m})
$$

Mark Notes

B1 si

B1 si

M1 ft $u_{\text {vert }}$
A1 oe, ft $u_{\text {vert }}$ provided direction opposes g

A1 cao
(5)

9(b) Horizontal distance travelled by $P D_{P}$

$$
=12 \cdot 25 \sqrt{ } 3 \times t
$$

Horizontal distance travelled by $Q D_{Q}$

$$
=12 \cdot 25 \sqrt{ } 3 \times(t-1)
$$

B1 both distances
$\mathrm{ft} u_{\text {horiz }}$ from (a)
$D_{P}+D_{Q}=R$
$D_{P}+D_{Q}=30 \cdot 623 \sqrt{ } 3$
$12 \cdot 25 \sqrt{3} \times t+$
$+12 \cdot 25 \sqrt{ } 3 \times(t-1)=30 \cdot 623 \sqrt{ } 3$
$t=1 \cdot 75$
OR $\quad H_{P}=12 \cdot 25 t-4 \cdot 9 t^{2}$
$H_{Q}=12 \cdot 25(t-1)-4 \cdot 9(t-1)^{2}$

Collision occurs when $H_{P}=H_{Q}$
$t=1 \cdot 75$
For height, use $s=u t+\frac{1}{2} a t^{2}$ with
$a=-9 \cdot 8, u=12 \cdot 25, t=1 \cdot 75$
M1 u must oppose $g(t-1=0 \cdot 75)$
$\mathrm{ft} t, t-1(t>1)$
$s=(12 \cdot 25)(1 \cdot 75)+\frac{1}{2}(-9 \cdot 8)(1 \cdot 75)^{2}$
Height, $H=6 \cdot 4(3125)(\mathrm{m})$

A1 cao
(5)

10(a) $\quad \mathbf{F}=m \mathbf{a}$
$\mathbf{a}=-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}$
$|\mathbf{a}|=\sqrt{\left(-\frac{3}{2}\right)^{2}+(2)^{2}+\left(-\frac{5}{2}\right)^{2}}$
$|\mathbf{a}|=\frac{5 \sqrt{2}}{2}=3 \cdot 54 \quad\left(\mathrm{~ms}^{-2}\right)$
m1

A1 cao
(3)

Alternative solution to (a)

$|\mathbf{F}|=\sqrt{(-3)^{2}+4^{2}+(-5)^{2}}=\sqrt{50}$
$F=m a$
(m1) used
$|\mathbf{a}|=\frac{5 \sqrt{2}}{2}=3 \cdot 54 \quad\left(\mathrm{~ms}^{-2}\right)$
(A1) cao

10(b) Use $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}\left(+\mathbf{r}_{\mathbf{0}}\right)$
with $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}, \mathbf{a}=-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}$
M1
$\mathbf{r}=(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \times 2+\frac{1}{2}\left(-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}\right) \times 2^{2}$
$\mathbf{r}=(6 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})+(-3 \mathbf{i}+4 \mathbf{j}-5 \mathbf{k})$
$r=3 \mathbf{i}-3 \mathbf{k}$
position vector $=(3 \mathbf{i}-3 \mathbf{k})+(2 \mathbf{i}-7 \mathbf{j}+9 \mathbf{k})$
position vector $=5 \mathbf{i}-7 \mathbf{j}+6 \mathbf{k}$

A1 cao
(3)

Total [6]

Alternative solution to (b)

$$
\begin{aligned}
& \mathbf{v}=\int \mathbf{a} \mathrm{d} t=\left(-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}\right) t+\mathbf{v}_{\mathbf{0}} \\
& =\left(-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}\right) t+(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\
& \mathbf{r}=\int \mathbf{v} \mathrm{d} t=\left(-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}\right) \frac{t^{2}}{2} \\
& +(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) t+\left(\mathbf{r}_{\mathbf{0}}\right) \quad(\mathrm{M} 1) \quad \text { attempt to integrate twice } \\
& \mathbf{v}_{\mathbf{0}} \text { must be present in } \mathbf{v} \\
& =\left(-\frac{3}{2} \mathbf{i}+2 \mathbf{j}-\frac{5}{2} \mathbf{k}\right) \frac{t^{2}}{2}+(3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) t \\
& +(2 \mathbf{i}-7 \mathbf{j}+9 \mathbf{k}) \quad(\mathrm{A} 1) \quad \text { oe } \\
& \text { At } t=2, \quad \mathbf{r}=5 \mathbf{i}-7 \mathbf{j}+6 \mathbf{k} \\
& \text { (A1) cao }
\end{aligned}
$$

