A2 - Continuous Distributions

The continuous uniform (rectangular) distribution X ~ U[a, b]

This has a constant probability density function (pdf) over a range of values and zero elsewhere.
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Var(X) = le- (b — a)?

Eg5  The continuous variable X is uniformly distributed X ~ U[2, 5]

Find (a) E(X) (b) Var(X) (c) P(X>3.8)
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Egé  Ajunior gymnastics league is open to children who are at least 5 years old but have not yet had their
9™ birthdays. The age X years, of a member is modelled as a uniform continuous distribution over the
range of possible values between five and nine. Age is measured in years and decimal parts of a year,

rather than just completed years. Find Sutu be/hmiTasadiing
(a) the pdf f(x) of X L
(b) P(6sX<7) "5
(c) E(X)
(d) Var(X) L] p-ak
(e) The percentage of the children whose ages are within one standard deviation of the mean.
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Eg7 A piece of string of length 8cm is randomly cut into two pieces. Find the probability that the longer of
the two pieces of string is at least 5cm long.
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‘%‘[ Given that Y ~Ul[a, b] and E(Y) = 3 and Var(Y) = 3, find P(Y < 2). E
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Eg9  The amount of time, in minutes, that a person must wait for a bus is represented by the pdf

T~ U[0, 15].
foutu be/CSFngVPfM

(a) what is the probability that the person waits fewer than 12.5 minutes?
(b) On average, how long must a person wait.

(c) What is the standard deviation of the waiting time? o
(d) 90% of the time, the time a person must wait falls below what value? .
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A2 - Continuous Distributions

The continuous uniform (rectangular) distribution X ~ Ula, b]

This has a co(nstant probability density function (pdf) over a range of values and zero elsewhere.
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Eg5  The continuous variable X is uniformly distributed X ~ U[2, 5]

Find (a) E(X) (b) Var(X) (c) P(X>3.8)
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Egb A junior gymnastics league is open to children who are at least 5 years old but have not yet had their
9" birthdays. The age X years, of a member is modelled as a uniform continuous distribution over the
range of possible values between five and nine. Age is measured in years and decimal parts of a year,
rather than just completed years. Find
(a) the pdf f(x) of X
(b) P(6<X<7)

(c) E(X)
(d) var(X)
(e) The percentage of the children whose ages are within one standard deviation of the mean.
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'?g'g’ A piece of string of length 8cm is randomly cut into two pieces. Find the probability that the longer of
the two pieces of string is at least 5cm long.
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Egl  Given that Y ~Ula, b] and E(Y) = 3 and Var(Y) = 3, find P(Y < 2).
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g@ The amount of time, in minutes, that a person must wait for a bus is represented by the pdf
T~ U[0, 15].

(a) what is the probability that the person waits fewer than 12.5 minutes?
(b) On average, how long must a person wait.
(c) What is the standard deviation of the waiting time?
(d) 90% of the time, the time a person must wait falls below what value?
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Exercise 2.2

1. The continuous random variable X ~ U[2, 7]
Find
a P(3B<X<5),
b PX=4
2. The continuous random variable X hasp d f as shown in the diagram
fiv)a
(1 -
i) 2.6 L \

Find
a  the value of i,
b FPE<X<73).

The contsnuous random variable X hasp d £
, ~22x=6,
E(x)= .
' 0, otherwise
Find

a  the value of &,
b P(-13<X <42

The continuous random variable ¥ ~ Ula, 3] Giventhat P(Y < 5) =

P = 7)= 3, find the value of ¢ and the value of &

B

Find E(X) and Var(X) for the following probabihty density functions
-1— 1€z
a f(x)=494 T
|0, otherwise,

S -]— -2 xEh,
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The continuous randotn variable ¥ ~ Ula, &] Guwven E(Y) =1 and Var(¥) =

The contthuous random varsable X hasp d f as shown in the diagram

fix) A
I
,5 3
Find
a EX),
b Var(X),

] s

find the value of @ and the value of &

The continuous random variable Xhas p.df as shown in the diagram
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Find
a the value of &,
b P-2<X<-1),
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d  Varlt),

3. A plumber measures, to the nearest cm, the lengths of pipes.

a

b

Suggest a suitable model to represent the difference between the true lengths

and the measured lengths

Find the probability that for a randomly chosen rod the measured length will be
within 0 2 cm of the true length

Three pipes are selected at random. Find the probability that all three pipes will
be within 0 2 cm of the true length




