

GCSE MARKING SCHEME

ADDITIONAL MATHEMATICS (PILOT)

SUMMER 2010

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2010 examination in GCSE ADDITIONAL MATHEMATICS (PILOT). They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PageAdditional Mathematics - Paper 11Additional Mathematics - Paper 23

GCSE Additional Mathematics - Paper 1

	Additional Mathematics Pilot 2010 - Paper 1	Mark	Comments
	(non calculator)		
1		D2	
1	x+2y=11 AND 3x+8y=40 or equivalent (double)	B2	B1 for either OR for x+2y=22 AND 3x+8y=80 FT provided B1 awarded
	(double)	M1	Method to solve for one variable, allow 1 slip
	Equate coeffs. e.g. $4x+8y=44$ and $3x+8y=40$	Al	Accept unsimplified
	x = 4 (cm)	M1	FT from their first variable
	Method to find second variable	A1	Accept unsimplified
	y = 3.5 (cm)	6	x+2y=22 AND $3x+8y=80$ gives $x=8$ and $y=7$
2	(a) $(x+10)^2 \pm \dots$	B1	Sight of $(x+10)^2$
	$-10^2 (+3)$	B1	Sight of -100, or implied (e.g by $=100 \text{ or } -97$)
	Least value – 97	B1	CAO. Needs to be stated,
		DI	$(x+10)^2$ -97 gets B1 B1 only unless -97 stated
	(b) $(x+1)^2$	B1	FT until second error, completing the square
	(b) $(x + f)^2 \dots f^2 (+ h = 0)$ $(x + f)^2 = f^2 - h$	B1 B1	method
	(x + 1) = 1 - 11 $x + f = (+) \sqrt{(f^2 - h)}$	B1 B1	
	$ \begin{aligned} \mathbf{x} + \mathbf{f} &= (\pm) \sqrt{(\mathbf{f}^2 - \mathbf{h})} \\ \mathbf{x} &= -\mathbf{f} \pm \sqrt{(\mathbf{f}^2 - \mathbf{h})} \end{aligned} $	B1	
		8	
3	(a) $24x^3 + 3(+0)$	B3	B1 for each term. Accept $6x4$ as 24. B2 for $24x^3$ -
	(b) $-8x^{-9}$	B1	2
	(c) $3/5 x^{-2/5}$	B1	ISW
		5	Index needs to be simplified
4	(a) $0.7 \times \dots = 0.56$	M1	Or alternative form, seen or implied
	P(pizza for dinner) = 0.8	A1 M1	ET their 1 D(nizzo for dinner) from (a)
	(b) $(1-0.7) \times (1-0.8)$ = 0.06	A1	FT their 1 - P(pizza for dinner) from (a) CAO
	= 0.06	4	CAO
5	(dy/dx=) 6x - 18	B2	B1 for 6x or -18
	dy/dx = 0 or $6x - 18 = 0$	M1	FT their dy/dx form ax+b throughout
	(Stationary point:) $x = 3$	A1	
	y = 5	A1	FT their x substitution
	$d^2y/dx^2 = 6$	M1	Or first derivative test, interpretation of first
	(Positive means) minimum	A1 7	derivative test. Or alternative.
6	(a) $x^2 + 6x + 8 = 0$	B1	Equate to zero
	$(x+4)(x+2) = 0$ or $x = (-6 \pm \sqrt{4})/2$	B1	FT from one error in forming their quadratic
	x = -4 AND $x = -2$	B1	CAO
		B1	Understanding of equating sum and product
	(b) $x + y = xy$	M1	Idea to change to one variable
	y+5+y = (y+5)y OR $x+x-5 = x(x-5)$	A1 B1	OR equivalent equate to zero Or e.g. by looking at all factors of 5 attempt to make
	5) $y^2 + 3y - 5 = 0$ OR $x^2 - 7x + 5 = 0$	E1	+3
	y + 3y - 5 = 0 OK $x = 7x + 5 = 0Correct substitution into quadratic formula$	8	+5 Convincing statement related to all factors and
	Conclusion, e.g. evaluated using formula with		middle term
	statement		
7	(a) $5 \text{ miles} = 8 \text{ km}$	B1	Or equivalent
/	$\begin{array}{c} (a) & 5 \text{ mmes} - 8 \text{ km} \\ & 48 \text{ (kmph)} \end{array}$	B1 B1	
	Sign should be 45	B1 B1	CAO from correct working
			Do not FT for simplified question, e.g. 5/30 ×100
	(b) $3/48 \times 100$	M1	FT from consistent (a) for their "48-45" and "48"
	= 6(.25%)	A1	
1		5	

	Additional Mathematics Pilot 2010 - Paper 1	Mark	Comments
	(non calculator)	IVIGIN	Comments
8	(a) $2(3)^3 - 2 \times 3 + 1$	M1	Or division method giving $2x^2 + 6x \dots$
	= 49	A1	
	(b)(i) Substitute $x = -4$	M1	Or division method giving $2x^2 - 3x \dots$
	showing $= 0$	A1	(-128 + 80 + 56 - 8)
	(ii) $(x+4)(2x^2 + bx + c)$		
	or intention to divide by $(x+4)$ with $2x^2$	M1	Or use of factor theorem
	shown	A2	A1 for $-3x$ or -2 . Or use of factor theorem A1 (x-2),
	$(x+4)(2x^2-3x-2)$		A1 (2x+1)
		A1	CAO. Penalise further working.
	(x+4)(2x+1)(x-2)	8	
9	(a) $(1, a)$ where $a > -3$	M1	Ignore missing brackets
	(1,2)	A1	CAO
	(b) Sketch	B1	Must intersect x-axis correctly
	(1, b) where $b > 0$	M1	Ignore missing brackets
	(1,3)	A1	CAO
10	(a) Entire 5, 11, 30	5 B2	D1 for any two correct or incorrect but differences
10	(a) EIIIIC 3, 11, 30	D2	B1 for any two correct, or incorrect but differences correct, 6 and 19
	(b) Explanation, e.g. "plots more widely	E1	Accept "less steep". Do not accept contradictions in
	spread"	3	the explanation
11	(a) (i) 4n	B1	Accept unsimplified answers throughout
**	(ii) Sight of 3n	B1	
	3n+1	B1	
	(b)(i) 4xy	B1	
	(ii) Strategy, e.g. simplify then extend or look	B1	
	at vertical and horizontal		
		M1	
	Method leading to correct answer, e.g. notices 1		
	more row to dimension comparison	A1	
	(x+1)y + x(y+1) ISW $(2xy+x+y)$	7	
10		D1	
12	(a) Sight or use of $\sin 60 = \sqrt{3}/2$	B1	Accept in (a), (b) or by diagram
	$\frac{1}{2} x (x + 3) \sin 60 = \sqrt{300}$	M1	Allow missing brackets
	$x(x+3)\sqrt{3} = 4\sqrt{300}$	A1	Or similar progress
	$x^2 + 3x - 40 = 0$ (b) $x = 5$	A1 B1	Convincing Accent $x=5$ shown in (a)
	(b) $x = 5$	M1	Accept x=5 shown in (a) Accept BA ² = $(x+3)^2 + x^2 - 2 \times x \times (x+3) \cos 60$.
	$BA^2 = 8^2 + 5^2 - 2 \times 8 \times 5 \cos 60$	1411	Accept BA $= (x+3) + x + 2 \times x \times (x+3)\cos \theta$. Allow missing brackets
	$DA = 0 + J = 2 \times 0 \times J = 0 \times 0$	B1	Accept in (a), (b) or by diagram
	Sight of $\cos 60 = \frac{1}{2}$	Al	necepi in (u), (b) or by angrain
	BA = 7 (cm)	8	
13	10 - 7(x+1) = 3 - 2x		Allow 1 slip with brackets
	$\frac{10(x+1)}{3x-2}$	B1	1^{st} step multiply through by any 2 of(x+1), 10 or
			(3x-2)
	(3x-2)(3-7x) = 10(x+1)(3-2x)	B1	For first 3 marks FT until 2 nd error
	$9x-6 - 21x^2 + 14x = 30x + 30 - 20x^2 - 20x$	B1	Clear fractions, equivalent to $\times 10(x+1)(3x-2)$
			Or equivalent
	$x^2 - 13x + 36 = 0$	B1	
			Fresh start, FT equivalent difficulty: Collect of terms
	(x-9)(x-4) = 0	M1	and equate to zero
	x=9, x=4	A1	Or correct substitution into quadratic formula
		6	

GCSE Additional Mathematics - Paper 2

	Additional Mathematics Pilot 2010 Paper 2	Mark	Comments
	(calculator allowed)		
1	$\Pi \times 70 \ (= 219.91)$	M1	
	$3 \times \dots / 70\Pi$ Sight or use of 1km = 100000 cm or equivalent	M1 B1	Distance / their circumference including \prod Or implied in calculation
	Answers in the range 1364 to 1365	A1	CAO
	Answers in the range 1504 to 1505	4	Cho
2	(a) $y + \delta y = 6 (x + \delta x)^2 + 5$	B1	
	Subtracting y from above to find δy	M1	Idea. Accept missing brackets after "-" symbol
	$\delta y = 12x \delta x + 6(\delta x)^2$ Dividing by $\delta y = \Lambda ND$ letting $\delta y \to 0$	A1 M1	Idea
	Dividing by δx AND letting $\delta x \rightarrow 0$ $dy = \lim_{x \to 0} \delta y = 12x$	A1	Idea
	$\frac{dy}{dx} \delta x \rightarrow 0 \delta x$		
		M1	Not a FT from (a)
	(b) $12x = -36$	A1	
	x = -3	A1	FT $6x^2 + 5$ evaluated for their x. Provided M1 awarded
3	$\frac{y = 59}{(a) (i) PQ^2 = (15 - 3)^2 + (11 - 6)^2 (=12^2 + 5^2)}$	M1	Allow 1 slip
	$PQ = \sqrt{169} (=13)$	Al	CAO
	(ii) Grad. PQ $(11 - 6) / (15 - 3)$	M1	
	= 5/12	A1	
	Grad. perpendicular $-12/5$	B1 B2	FT -1/grad PQ. Do not accept fraction of fraction B1 for $m = 2/5$ or $c = -3$
	(b) $y = 2/5 x - 3$ or equivalent	В2 7	D1 101 III = $2/3$ Of C =-3
4	$(x \dots)(x^2 \dots x \dots x \dots)$	/ M1	Attempt expand of a pair of brackets
	$(x-1)(x^2+x-6)OR(x+3)(x^2-3x+2)OR(x-2)(x^2+2x-$	A1	Allow missing brackets if intention shown
	3)	A1	
	Correct expansion, not collected $x^3 - 7x + 6$ therefore L HS = PHS	A1 4	Accept $x^3 - 7x + 6 = x^3 - 7x + 6$ as a conclusion. Needs a conclusion
5	$x^3 - 7x + 6$ therefore LHS \equiv RHS Overall strategy, circle thm. & trig	4 S1	
	Sin40= $\frac{1}{2}$ BC/3 OR BC ² = 3 ² +3 ² -2× 3× 3×	M1	Or equivalent
	cos80	A1	-
	$\frac{1}{2}$ BC = 3 × sin40 BC ² = 14.874	A1	Rounded or truncated
	$BC = 3.85\dots$ $$	B1 M1	Maybe indicated on the diagram FT their BC & <cab< td=""></cab<>
	<CAB = 40° sinACB/5.6 = sinCAB/BC	A1	CAO
1	Answers in the range 67.3 to 69.6	7	
6	Attempt dy/dx, one term correct	M1	
	$dy/dx = 3x^2 + 8x$	A1	
1	at $x=1$ gradient = 11	A1 D1	FT equivalent level of difficulty
1	when $x=1$ $y=-2$ Equation $(y-2) = 11 (x - 1)$	B1 m1	Or alternative method of setting up the equation
1	$(y^{-2}) = (x^{-1})$		FT their value of gradient & point only if M1
1			awarded. Depends on use of calculus
1	y+2 = 11 (x-1) ISW $(y = 11x - 1)$	A1	CAO. Any form
7	13) Attempt to solve simultaneous equations	6 M1	
/	Attempt to solve simultaneous equations $x^2 + 3x - 18 = 0$	M1 A1	Equate to zero
	(x-3)(x+6) = 0	M1	FT their quadratic. Or correct sub. into formula
1	x = 3, y = -6 AND $x = -6, y = 12$	Al	FT their pair of brackets
			If no marks awarded then SC1 for either
0	Suitable diagram for at locat 1 word	4 D1	(3,-6) or (-6,12). Both answers all 4 marks
8	Suitable diagram for at least 1 mast tan36=88/x	B1 M1	Penalise premature approximation once only PA-1
	$x = 88/\tan 36$	M1	
	= 121.(1216 metres)	Al	
	350 - x (= 228.878)	B1	For the strategy that is required. FT their x
	height shorter mast = $\tan 14 \times (350 - x)$	M2	M1 for $tan14 = height/(350-x)$. M0 for $tan14 \times 350$
	= 57.(metres)	A1 8	
		0	

GCSE Additional Mathematics Mark Scheme (Summer 2010)

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>