

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Additional Mathematics Summer 2012		Final Mark Scheme
1	(a)(i) 27	B2	B1 for either 1/8 or 216
	(ii) 10 000	B1	Answer only, no working shown, B0 e.g. $(\sqrt{100})^4 = 10^4 = 10\ 000$, or $10^4 = 10\ 000$, or $100^2 = 10\ 000$. Do not accept $\sqrt{100^4} = 10\ 000$
	(b)(i) (20)x ^{8/4} /x ^{3/2} or equivalent first stage of work evaluated correctly with simplification of indices	B1	Answer only, no working shown, B0
	$20x^{1/2}$ or $20\sqrt{x}$	B1	CAO. Mark final answer
	(ii) Correctly extracting a factor of x ^{1/5} (numerator), OR correct alternate method with one correct step towards simplification	M1	Must be correct, but could be $6x^{1/5}$, $3x^{1/5}$ or $x^{1/5}$. For an alternative method, need sight of $3 + x^{2/5}/x^{1/5}$ for M1
	$3 + x^{1/5}$	A1 7	CAO. Mark final answer
2	Common denominator x + 2y	B1	
	$\frac{x+2y-(3x-y)}{x+2y}$ OR $\frac{x+2y-3x+y}{x+2y}$	B1	Brackets must be shown or implied by correct further working Must be seen or implied as a quotient
	$\frac{-2x + 3y}{x + 2y}$	B1	FT from B1, B0 for one error in sign leading to an answer of $(y - 2x)/(x + 2y)$ to give final B1 Do not ignore further working. Mark final
3	(a) $56x^6 + 2 (+0)$	3 B3	answer D1 for each terms Accept 8y7 as 56
3		ВЗ	B1 for each term. Accept 8×7 as 56. Only award B1 for '(+0)' provided at least one other B mark awarded. ISW ISW
	(b) -8x ⁻⁹	B1	Index needs to be simplified. ISW
	(c) $3/2 \times x^{1/2}$	B1 5	
4	(a) $(-3)^3 - 2(-3)^2 - 9(-3) + 18$	M1	
	=0	A1	
	(x+3) is a factor OR divisible by x+3	E1	Depends on M1, A1. Do not accept contradictions
	(b) $(x+3)(ax^2+bx+c)$ or intention to \div $(x+3)$	M1	Division method needs to show x ² and attempt to find the next term May be division by x-3 or x-2, mark in the same way as described for division by x+3
	$(x+3)(x^2-5x+6)$	A2	A1 for -5x or +6. Or use of factor theorem A1 for each factor
	((x+3))(x-3)(x-2)	A1 7	CAO. Mark final answer. Do not ignore continuing to solve. An answer of $(x-2)(x^2-9)$ is awarded M1, A2
5	$(dy/dx =) 3ax^2$	M1	An unswer of $(x-2)(x-9)$ is awaraea M1, A2
	Strategy to substitute x=3 into dy/dx	m1	
	Equating 'their 3a3 ² ' to 135 a = 5	m1 A1	Depends on all previous marks
		4	N.B. No marks awarded for $a = 5$ from an incorrect method, e.g. $135 = a \times 3^3$, then $a = 135/27 = 5$
6	(a) Multiplier $(2-\sqrt{5}) / (2-\sqrt{5})$	M1	
	Denominator $4 + 2\sqrt{5} - 2\sqrt{5} - 5$ OR $4 - 5$ OR -1 $3\sqrt{5} - 6$ or $(6 - 3\sqrt{5})/-1$	A1 A1	CAO. Mark final answer
	(b) $\{3+2\sqrt{3}+2\sqrt{3}+4\} - \{3-2\sqrt{3}-2\sqrt{3}+4\}$ OR $\{(\sqrt{3}+2)+(\sqrt{3}-2)\}\{(\sqrt{3}+2)-(\sqrt{3}-2)\}$	B2	B1 for 1 slip $(3+2\sqrt{3}+2\sqrt{3}+4-3-2\sqrt{3}-2\sqrt{3}+4)$ is 3 slips, unless brackets were intended as implied by further working
	8√3	B1 6	CAO. Mark final answer
7	(a) $RS^2 = (31-7)^2 + (15-5)^2$ (= $24^2 + 10^2$) $RS = \sqrt{676}$ (=26) (b) Gradient RS (31-7)/(15-5)	M1 A1 M1	Or equivalent. Allow 1 slip or error CAO
	=12/5 or equivalent Perpendicular gradient -5/12 or equivalent	A1 B1 5	Do not ignore incorrect cancelling in (b) FT -1/'their gradient RS'. Do not accept fraction of a (decimal) fraction

	Additional Mathematics Summer 2012		Final Mark Scheme
8	(a) $24x^3+4$	B1	
	$72x^2$	B1	FT to 2^{nd} B1 from $dy/dx = kx^n + a$, equivalent
			level of difficulty
	(b) $(3/3) x^3 + 4/(-2x^2) + (8/2) x^2$	В3	B1 for each term. Accept unsimplified. ISW
	+ c (constant)	B1	Award if at least B1 given for integration
	,		
	(c) $6x^2/2 + x$	B2	B1 for $6x^2/2$ or x
	$[6x^2/2 + x]_2^4$	M1	FT their integration not use of $6x + 1$.
			Intention to use 4, 2 and subtract
	$=(3\times4^2+4)-(3\times2^2+2)$	A1	FT for correct use of limits
	= 38	A1	CAO, not FT.
		11	Answer only, no working shown, M0 A0 A0
9	(a)(5x+3)(3x-2)	B2	B1 $(5x \dots 3)(3x \dots 2)$. Ignore sight of "=0"
	-3/5 or 2/3	B2	Strict FT from (a) if $(5x3)(3x2)$ or
			(5x2)(3x3).
	(b) $(x+5)^2$	B1	B1 for each answer
	-10	B1	Sight of $(x+5)^2$ or $(x+10/2)^2$ or $(x+5)(x+5)$
			Accept 15 - 25 if not evaluated, otherwise
	Least value -10	B1	mark final value
		7	FT their value but not 25 or 15
10	y = 13 - 2x	B1	OR equivalent using $x =$
	$x^2 + x(13 - 2x) - 30 = 0$	M1	FT their y, attempt to substitute
	$x^2-13x+30 = 0$ or $-x^2+13x-30 = 0$ or equivalent in y	A1	Must equate to 0 (maybe implied by answer)
	$(x-10)(x-3)$ {=0}	M1	FT equivalent level of difficulty
			OR correct use of formula with $b^2 - 4ac$
			evaluated correctly
	x = 10 and $x = 3$	A1	
	y = -7 and $y = 7$	A1	FT from M1, A0
			Answer $x=3$ and $y=7$ OR $x=10$ and $y=-7$ from
			a trial and improvement method, award SC1.
			Also possible B1, M1, A1 with SC1
			Alternative method:
			$B1 2x^2 + xy = 13x$
			<i>M1 Intention to subtract, using</i> $x^2 + xy - 30 = 0$
		6	then as original method

	Additional Mathematics Summer 2012		Final Mark Scheme
11	Any two of the equations: $\frac{1}{2}$ xy = 1350,	B2	Or equivalents. B1 for any one of the three
	$x^2 + y^2 = 75^2$, $x + y + 75 = 180$		equations.
			FT provided B1 awarded for possible M, A and
		3.54	m, not final A1, A1
	Attempt to solve the simultaneous equations	M1	Accept a trial & improvement method for at
	$x^2 - 105x + 2700 = 0$ OR $y^2 - 105y + 2700 = 0$	A1	least one correct trial Must equate to zero. FT a trial & improvement
	$\begin{bmatrix} x - 103x + 2700 = 0 & OR y - 103y + 2700 = 0 \end{bmatrix}$	AI	method for at least one correct trial either side
			or including of '0'
	Reasonable attempt to factorise, or use of quadratic	m1	FT a trial & improvement method, depends on
	formula, or completing the square		M1 and A1, for working towards a correct
			answer, narrowing search further
	Sides: 45(cm)	A1	CAO
	60(cm)	A1	CAO
			If we would see a second CCI if the second CCI is AB
			If no marks, award SC1 if the sum of their AB and their BC is 105
			and their BC is 103
			Correct answers 45(cm) and 60(cm) are
			awarded 7 marks, but if unsupported, or use of
			only one of the statements, then QWC0
	QWC2 requires some text connected to equations	QWC	QWC2 Presents relevant material in a coherent
	as well as good mathematical notation with units in	2	and logical manner, using acceptable
	the final answer.		mathematical form, and with few if any errors
	QWC2: Candidates will be expected to • present work clearly, with clear		in spelling, punctuation and grammar.
	 present work clearly, with clear process or steps shown 		OWC1 Presents relevant material in a coherent
	AND		and logical manner but with some errors in use
	make few if any mistakes in		of mathematical form, spelling, punctuation or
	mathematical form, spelling,		grammar
	punctuation and grammar		OR
	•		evident weaknesses in organisation of material
	QWC1: Candidates will be expected to		but using acceptable mathematical form, with
	present work clearly, with clear		few if any errors in spelling, punctuation and
	process or steps shown explaining		grammar.
	process or steps		QWC0 Evident weaknesses in organisation of
	OR		material, and errors in use of mathematical
	make few if any mistakes in		form, spelling, punctuation or grammar.
	mathematical form, spelling,	9	, , , , , , , , , , , , , , , , , , , ,
12	punctuation and grammar		
12	Intention to integrate $6x - x^2$ $3x^2 - x^3/3$	M1 A2	A1 for each Accent 6/2 as 2
	Use of correct limits 6 & 0 in correct order with the	m1	A1 for each. Accept 6/2 as 3 Depends on previous M1, A1
	intention to subtract	1111	Depends on previous wit, At
	36	A1	CAO. Answer only gets no marks
		5	No marks for use of the trapezium rule.

	Additional Mathematics Summer 2012		Final Mark Scheme
13	Strategy: Idea of 3D-ness and Pythagoras' Theorem	S1	E.g. suitable diagram & attempt Pythagoras'
			Theorem once
	$(Base diagonal)^2 = 4^2 + 4^2$	M1	Or for (½ diagonal) ² equation
	Base diagonal = $\sqrt{32}$ (Or $\frac{1}{2}$ base diagonal = $\frac{1}{2}$ $\sqrt{32}$	A1	1 (,,
	(Perpendicular height) ² = $6^2 - (\frac{1}{2}$ base diagonal) ²	M1	FT their (½ diagonal) ²
	$= 36 - \frac{1}{4} \times 32$	A1	1 1 then (/2 diagonal)
		A1	Depends on M1 only
	Perpendicular height = $\sqrt{28}$	B1	FT provided at least M2 awarded
	2√7	D1	Alternative:
			S1 Strategy: Idea of 3D-ness, Pythagoras'
			Theorem once
			M1 (sloping perpendicular bisector) ² = 6^2 - 2^2
			A1 sloping perpendicular bisector = $\sqrt{32}$
			MI (Perpendicular height) ²
			= $(\text{sloping perpendicular bisector})^2 - 2^2$
			(FT their perpendicular bisector)
			A1 (Perpendicular height) ² = $(\sqrt{32})^2 - 2^2$
			A1 Perpendicular height $\sqrt{28}$ (Depends on M1
		7	only)
			B1 $2\sqrt{7}$ (FT provided at least M2 awarded)
14	$C = 2\pi x$	B1	Do not accept embedded within an incorrect
			equation
	Surface area = length \times C	B1	FT their linear C. Allow intention
	$2\pi x(3x+2) = 32\pi$	M1	Must be correct. Accept numerical value for π
	$\frac{2\pi\lambda(3\lambda+2)-32\pi}{2\pi}$		Intention of brackets must be clear in working
	$3x^2 + 2x - 16 = 0$ or equivalent	A1	Needs to have eliminated π and equate to zero
	3x + 2x - 10 = 0 of equivalent	111	Equate to zero maybe implied by solving
	(3x +8)(x - 2) = 0	M1	FT their quadratic provided B2 awarded
	(3x + 6)(x - 2) = 0	1,111	OR correct substitution into the formula, or use
	(x=-8/3) $x=2$	A1	of completing the square
	Height is 8 (cm)	A1	
	rieight is 6 (cm)		Unsupported correct answers, award 7 marks,
			otherwise correct working needs to support
		7	
1.5	()(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)2.5(,\$\)3.5(,\$\)	B1	answers, use of πx^2 is incorrect Or alternative notation. Allow if final bracket
15	(a) $(y+\delta y =)$ $(x+\delta x)^2 - 5(x+\delta x)$	ĎΙ	
	7	N.f.1	omitted
	Intention to subtract (y=) $x^2 - 5x$ to find δy	M1	
	$(\delta y =) 2x\delta x + (\delta x)^2 - 5\delta x$	A1	Accept δx^2 as meaning $(\delta x)^2$
	Dividing by δx and letting $\delta x \rightarrow 0$	M1	ato was a second
	$dy/dx = \lim \delta y/\delta x = 2x - 5$	A1	CAO. Notation needs to be accurate
	δx→0		Use of dy/dx throughout max 4 marks only,
		,	final A0
	(b) $2x - 5 = 15$	M1	FT from their response in (a) into (b)
	x = 10	A1	
		7	
16	(a) $(y =) 4\sin 3x$ selected	B1	
	(b)(i) -1	B1	CAO
	(ii) 18(°) and 90(°) with no other angles given	B2	B1 for either 18(°) or 90(°). Accept embedded
		4	answers

Level 2 Certificate in Additional Mathematics MS/Summer 2012

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk