

MARKING SCHEME

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS Mark Scheme - Summer 2015

	Additional Mathematics		Final
1	$\frac{\text{Summer 2015}}{(2x-5)(3x+2)}$	B2	B1 $(2x5)(3x2)$ or $(2x2)(3x5)$
	5/2 and -2/3	B2	Ignore sight of "=0" Must be from factorising, do not accept use of quadratic formula followed by 'factorising'. MUST FT for their factors
		4	FT for their factors equivalent difficulty not leading to whole number solutions. B1 for each answer Allow -0.66 or -0.7 as a solution provided $3x = -2$ is seen in working
2	(a) $(x + 7)^2$ (±)	M1	Ignore 'their (±)' or '=0' Do not accept method dy/dx =2x+14
	(Minimum value at $x = -7$ (b) -40	Al B1	Unsupported -7 is M0, A0
		3	Must be given in (b), do not accept shown in (a). Do not accept reversed answers of '-40' in (a) and '-7' in (b), maximum mark would be possible M1 in (a) However, if no marks in (a), but a full statement, e.g. 'minimum value -40 when $x = -7$ ' is given in (b), then award B1 in (b) and M1, A0 in (a)
3	(a) $40x^7 - 6$ (+0)	B3	B1 for $40x^7$ (not $5 \times 8x^7$), B1 for -6 and B1 for +0 (or blank) provided at least one other mark awarded
	(b) $-8x^{-9}$ (or $-8/x^9$) (c) $2/5x^{-3/5}$ or equivalent	B1 B1	CAO. Index needs to be simplified. CAO. Index needs to be simplified. ISW once simplified to stages shown in (b) and (c)
		5	Penalise including '+c' -1 only
4	(a) $(DE^2 =) (64)^2 + (22 - 14)^2 (=10^2 + 8^2)$	M1	Or $(-4-6)^2 + (14-22)^2$. Allow 1 slip in sign of substitution
	$DE = \sqrt{164}$ $= 2\sqrt{41}$	A1 B1	CAO FT 'their DE' of equivalent difficulty expressed correctly, e.g. $\sqrt{18} = 3\sqrt{2}$, needs to be in the form $a\sqrt{b}$ where $a\neq 1$ and $b\neq 1$ or simpler Sight of $2\sqrt{41}$ implies previous $\sqrt{164}$
		M1	Or (14-22)/(-4-6)
	(b) Gradient DE $(22 - 14) / (64)$ = $8/10 (= 4/5)$ Gradient perpendicular = $10/8 (= 5/4)$	AI B1	CAO. Mark final answer and then FT FT -1/grad DE
	(6+-4)/2, (22 + 14)/2 Mid paint DE (1, 18) or equivalent	M1 A1	Accept (1,) or (, 18) CAO
	Use of y=mx+c or $y-y_1=m(x-x_1)$	M1	Method to find the equation using mid-point and perpendicular gradient (not 8/10)
			gradient, or FT substitution of their midpoint with their
			perpendicular gradient in $y = mx + c$ (towards finding c)
		Δ 1	<i>is no working for finding gradient is seen, then their spurious' incorrect perpendicular gradient' must be negative</i>
	y = -10x/8 + 191/4 or $y - 18 = -10/8$ (x - 1)	Al	FT for correct unsimplified form, not written in quotient form
	10x + 8y - 154=0 OR 5x + 4y - 77 = 0 OR -10x - 8y + 154=0 OR -5x - 4y + 77 = 0	11	CAO. Form $ax + by + c = 0$ or a rearrange of this provided it is '=0'

	Additional Mathematics		Final
5	Summer 2015	D1	
5	Signt of x-4 and x+1 2(x(x-4) + x(x+1) + (x-4)(x+1)) (=	M2	FT 1 error in 1 side length, provided it is in the form ' $x \pm a$ ' and not a single term expression, for M marks only Some work may be shown in stages, but implies the following M and m marks, but need to show summation
	124)		Correct expression for the total surface area Accept '×2' omitted if equated to 62 M1 for '×2' aspect omitted, or M1 for '×2' included with any 2 (of 3) area expressions correct, or M1 for '×2' included with any 4 (of 6) areas correct, or M1 if it could be correct but brackets missing and not implied in later working (if implied in later working allow M2)
		ml	
	$2x^{2} - 8x + 2x^{2} + 2x + 2x^{2} - 8x + 2x - 8 =$ 124 OR $x^{2} - 4x + x^{2} + x + x^{2} - 4x + x - 4 = 62$	A 1	Equate to 124 with ' \times 2' treated correctly, or equate to 62 if appropriate, with at least 2 of the 3 (or 4 of the 6) brackets expanded correctly; depends on M1
		ЛІ	Depends on M2 m1 for correct manipulation and
	$6x^2 - 12x - 8 = 124 \text{ OR } 3x^2 - 6x - 4 = 62$	A1	collection of terms
	Shows or sight of $x^2 - 2x = 22$ or $x^2 - 2x - 22 = 0$	M1	Requirement to show as asked in the question
	$(x-1)^2 = 22 + 1$ OR $x = \frac{2 \pm \sqrt{92}}{2}$	A 1	Independent of other marks Must be correct to this stage of working FT for their quadratic equation of equivalent difficulty
	2	AI	CAO. Do not accept $1 \pm \sqrt{23}$
	$x = 1 + \sqrt{23}$	QWC	
		2	QWC2 Presents relevant material in a coherent and
	QWC2:		logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar
	present work clearly, with words		grunnia.
	explaining process or steps AND		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of
	• make few if any mistakes in		mathematical form, spelling, punctuation or grammar
	mathematical form, spelling,		OR avident weeknesses in organisation of material but
	answer		using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
	QWC1: Candidates will be expected to		
	• present work clearly, with words explaining process or steps		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar
	• make few if any mistakes in		parteration of Stammar.
	mathematical form, spelling.	10	
	punctuation and grammar in their		
	final answer		

	Additional Mathematics Summer 2015		Final
6	$2x+1 = x^{2} + 6x - 5$ $x^{2} + 4x - 6 = 0$	M1 A1	Must be equated to zero. '=0' may be implied in further work to solve, if no further work and not '=0' then A0
	$\mathbf{x} = \{-4 \ \pm \sqrt{(4^2 - 4 \times 1 \times -6)}\}/2$	m1	equivalent level of difficulty Use of correct quadratic formula, allow 1 slip in substitution (not a slip with the formula) If completing the square used award m1 for sight of
	$x = \{-4 \pm \sqrt{40}\}/2$	A1	$(x + 2)^2 \pm \dots$
	x = 1.16 and $x = -5.16$	A1	
	x = 1.16 with $y = 3.32$ or $y = 3.31and x = -5.16 with y = -9.32 or y = -9.33$	A1	FT provided M1,m1 previously awarded using their values of x in $2x + 1$ or equivalent to find y-values to 2 d.p.
			Alternative using $x = (y - 1)/2$
		6	$ \begin{array}{ll} M1 & y = (\underline{y-1})^2 + 6(\underline{y-1}) - 5 \mbox{ or } y = y^2/4 + 5y/2 - 8 \\ & 2^2 & 2 \\ A1 & y^2 + 6y - 31 = 0 \mbox{ or equivalent (equate to zero)} \\ m1 & y = \{-6\pm\sqrt{(6^2 - 4\times1\times-31)}\}/2 \mbox{ or equivalent (} \times \frac{1}{4}) \\ & Allow 1 \mbox{ slip in substitution} \\ A1 & y = (-6\pm\sqrt{160})/2 \mbox{ or equivalent} \\ A1 & y = 3.32 \mbox{ and } y = -9.32 \\ A1 & x = 1.16, \ y = 3.32 \mbox{ and } x = -5.16, \ y = -9.32 \\ FT \mbox{ to final A1, provided M1,m1 previously awarded} \\ using their values of y in (y - 1)/2 \mbox{ or equivalent to find} \\ x-values to 2 \ d.p. \end{array} $
7	(a) $3(-2)^3 - 2(-2)^2 + 5(-2) - 1$ (= -24-8-10-1) -43	M1 A1	Or division method giving $3x^2 - 8x \dots$
	(b)(i) Substitute $x = 2$ Showing $f(2) = 0$	M1 A1	Or division method giving $x^2 + 10x \dots$ Accept sight of substitution with '=0' shown
	(ii) $(x-2)(x^2 + bx + c)$ or intention to divide by (x-2) with x^2 shown	M1	If any values are inserted at least 1 needs to be correct, appropriate sight of +10x or +21 implies M1 (and A1 to follow)
	$((x-2))(x^2+10x+21)$	A2	A1 for (+)10x or (+)21 Or use of factor theorem A1 (x+3), A1 (x+7)
	((x-2)) $(x+3)(x+7)$	A1 8	CAO, but ignore sight of "=0", ISW
8	(a) 180x ⁸	B2	B1 for sight of 20x ⁹ . FT to 2^{nd} B1 from dy/dx = kx ⁿ Ignore incorrect notation
	(b) $a = 1$ c = 5	B1 B1	
	b = 3	B1	FT b = 8 - 'their c' or $b = 4$ - 'their a'
		5	Accept sight of correct answers from 'uncorrected' working Do not accept embedded answers, candidates need to identify values for a, b and c, not accept as left in working without clearly stating.

	Additional Mathematics		Final
0	5000000000000000000000000000000000000	D/	R1 for each term Accent unsimplified w ⁻¹ / 1 ISW
9	(a) $21x / (-5x / 5 - x / -1 + 6x) + c$ (constant)	В4 B1	Awarded if at least B1 for integration
	(b) $6x^3/3 + 4x^2/2$	B2	Mark final answer, then FT. B1 for sight of $6x^{3/3}$ or $4x^{2/2}$
	$[6x^{3}/3 + 4x^{2}/2]_{2}^{5}$	M1	FT their integration, not original. Intention to use 5. 2 and subtract
	$=(2\times5^{3}+2\times5^{2})-(2\times2^{3}+2\times2^{2})$	A1	FT for correct use of limits Accept unsimplifed fractions included
	= 276	A1	CAO, not FT. Do not accept '276 + c' Answer only, no working shown M0 A0 A0
		10	
10	(a) $(\frac{1}{2})^2 + (\sqrt{3}/2)^2$	M1	Use of $\frac{1}{2}$ and $\sqrt{3}/2$ appropriately in either order
	$\frac{1}{4} + \frac{3}{4}$ (=1)	AI	
	(b) $5 \times 1 + 2 \times \sqrt{3/2} + \sqrt{3}$	M2	M1 for any 2 terms correct M1 only if first line of working is $5 \pm \sqrt{3} \pm \sqrt{3}$ but
			allow FT for possible A1
	$5 + 2\sqrt{3}$	A1 5	CAO. Mark final answer
11	3D visualisation with height 12cm AND	S1	e.g. 3D sketch with sight of height 12cm, Pythagoras'
	use of appropriate methods		Theorem and tan ratio, or full alternative trig method following Dythagoras' Theorem, or use of hose area to
			find the side length followed by full alternative trig
			method
	Side length of base 8cm or 1/2 side 4cm	B1	Sight of 8cm or 4cm as appropriate
	diagonal ² = $8^2 + 8^2$ OR (1/2	M1	FT their side length, provided \neq 64, throughout other
	diagonal) ² =4 ² +4 ²		than the final A mark.
		A1	$(diagonal=11.3137cm, \frac{1}{2}diagonal = 5.65685cm$
	diagonal is $\sqrt{128}$ or $8\sqrt{2}$ (cm) OR		rounded or truncated)
	$\frac{1}{2}$ diagonal is $\frac{1}{2}\sqrt{128}$ or $4\sqrt{2}$		
		M1	FT their derived ¹ / ₂ diagonal for M1 only, not 8 or 4(cm)
	tan 'required angle' = $(12 / \frac{1}{2} \text{ diagonal})$ or		Full alternative method: finding perpendicular height of
	full alternative method		a sloping face then the slant edge
		A2	CAO. Accept $65(^{\circ})$ from correct working
	64.7(6°) or 64.8(°)		A1 for $\tan^{-1}(12/\frac{1}{2}\sqrt{128})$, or for an answer from
		7	
12	$y+\delta y = (x+\delta x)^2 - 3(x+\delta x)$	B1	Or alternative notation. Allow if final bracket omitted
	Intention to subtract (y=) $x^2 - 3x$ to find by	M1	
	$\delta y = 2x \delta x + (\delta x)^2 - 3\delta x$	Al M1	Accept δx^2 as meaning $(\delta x)^2$
	dv/dx – lim $\delta v/\delta x = 2x - 3$		CAO. Must follow from correct working
	$dy/dx = \lim_{\delta x \to 0} \delta y/\delta x = 2x - 5$	ЛІ	Use of dy/dx throughout or incorrect notation then
		5	possible maximum is only 4 marks, final A0
13	When $x = 3$, finding $y = -6$	B1	
	dy/dx = 4x - 8	M1	
	when $x = 3$ gradient is 4 Use of $y - y_1 = m(x - x_1)$ or $y - mx + c$	AI M1	Method to form equation
	$\int dx dx = \int dx$	1411	FT their y value, but not $y=3$ and their derived gradient
	$y6 = 4 (x-3)$ or $-6 = 4 \times 3 + c. c = -18$	A1	
	4x - y - 18 = 0	Al	CAO. Must be in this form, accept equivalents written
			as 3 terms with whole number coefficients with '=0' or
		6	·0=·

	Additional Mathematics		Final
	Summer 2015		F IIIai
14	$(dy/dx=) 6x^2 - 24$	B1	2
	$dy/dx = 0$ or $6x^2 - 24 = 0$	M1	FT their dy/dx form $ax^2 + b$ throughout
	x = 2 and $y = -$	Al	
	19	Al	Answer only, no working shown M0 A0 A0
	x = -2 and $y =$		
	45		Method for determining min or max MUST be shown,
		N/1	final answer only is M0 here, then A0,A0
		MI	Or first derivative test, interpretation of first derivative
	$d^2 v/dv^2 = 12v$	A 1	ET for their x value
	d y/dx = 12x		FT for their other y value provided this does not have
	At (2, 10) $d^2 y/dy^2 > 0$ point is a minimum	AI	the same interpretation as the first x value
	At $(2, -19)$ d $y/dx > 0$, point is a minimum		Sc1 for correct FT from $d^2 y/dx^2 = ax_0 a > 0$
	At $(-2, +3)$. d y/dx <0 , point is a maximum		SCI jor correct I I jrom u y/ux = ux, u>0
			Do not accept trial & improvement methods unless both
			stationary points are found correctly and confirmed as
		7	stated in the mark scheme
15	(a) General cos curve intersecting x-axis	M1	Allow general shape as the joining of key values, but
10	only at $(90^\circ.0)$ and $(270^\circ.0)$		straight rather than clearly curving towards a turn at 0°
			and 360° in particular
	Correct curve with 5 and -5 on y-axis	A1	Must show a clear curve, not a straight a 0° and 360° in
			particular
	(b) 90° and 270° only	B1	This values need to be selected, not amongst others
			unless unambiguous indicated as the response.
		3	
16	144	B1	No marks if no working. Must see 12^2 or $(2\sqrt{3})^4 =$
		1	16×9'
	8/8 2/2		
17	(a) $(20)x^{3/6}/x^{2/3}$ or equivalent first stage of	B1	
	work evaluated correctly with		
	simplification of indices		
	$20x^{\prime 3}$ or $20^{-5}\sqrt{x}$	BI	CAO. Mark final answer
	14	MI	
	(b) Correctly extracting a factor of x^{4} (to	MI	For an alternative method, need signt of the two terms
	give correct numerator) OR		$\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}x^{2/4}$ for M1
	correct alternative method with one		$2 \pm \dots \text{ of } \dots \pm X$ for N11
	correct step towards simplification $\frac{1}{14}$	Δ1	
	$2 + x^{2}$ or $2 + \sqrt{x}$		CAO according $2 + x^{2/4}$ Mark final answer
		4	CAU accepting $2 + x$. Mark final answer

Level 2 in Additional Mathematics MS Summer 2015

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>