C3 Chapter 4 Numerical Methods

Question Number	Scheme		Mark	s
3.	(a) $f(2) = 0.38 \dots$ $f(3) = -0.39 \dots$ Change of sign (and continuity) \Rightarrow root in $(2,3)$ * (b) $x_1 = \ln 4.5 + 1 \approx 2.50408$ $x_2 \approx 2.50498$ $x_3 \approx 2.50518$	cso	M1 A1 M1 A1	(2)
	(c) Selecting [2.5045, 2.5055], or appropriate tighter range, and evaluating at both ends. $f(2.5045) \approx 6 \times 10^{-4}$ $f(2.5055) \approx -2 \times 10^{-4}$ Change of sign (and continuity) \Rightarrow root \in (2.5045, 2.5055) $\Rightarrow \text{root} = 2.505 \text{ to } 3 \text{ dp } \bigstar$ Note: The root, correct to 5 dp, is 2.50524	cso	A1 M1	(2) [7]

Question Number	Scheme		Marks
Q2	$f(x) = x^3 + 2x^2 - 3x - 11$		
(a)	$f(x) = 0 \implies x^3 + 2x^2 - 3x - 11 = 0$ $\implies x^2(x+2) - 3x - 11 = 0$	Sets $f(x) = 0$ (can be implied) and takes out a factor of x^2 from $x^3 + 2x^2$, or x from $x^3 + 2x$ (slip).	M1
	$\Rightarrow x^{2}(x+2) = 3x+11$ $\Rightarrow x^{2} = \frac{3x+11}{x+2}$		
	$\Rightarrow \qquad x = \sqrt{\left(\frac{3x+11}{x+2}\right)}$	then rearranges to give the quoted result on the question paper.	A1 AG (2)
(b)	Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$, $x_1 = 0$		
	$x_2 = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$	An attempt to substitute $x_1 = 0$ into the iterative formula. Can be implied by $x_2 = \sqrt{5.5}$ or 2.35 or awrt 2.345	M1
	$x_2 = 2.34520788$ $x_3 = 2.037324945$ $x_4 = 2.058748112$	Both $x_2 = \text{awrt } 2.345$ and $x_3 = \text{awrt } 2.037$ $x_4 = \text{awrt } 2.059$	A1 A1 (3)
(c)	Let $f(x) = x^3 + 2x^2 - 3x - 11 = 0$		()
	f(2.0565) = -0.013781637 f(2.0575) = 0.0041401094 Sign change (and $f(x)$ is continuous) therefore a root α is such that $\alpha \in (2.0565, 2.0575) \Rightarrow \alpha = 2.057$ (3 dp)	Choose suitable interval for x, e.g. [2.0565, 2.0575] or tighter any one value awrt 1 sf both values correct awrt 1sf, sign change and conclusion	M1 dM1 A1 (3)
		As a minimum, both values must be correct to 1 sf, candidate states "change of sign, hence root".	701
			[8]

2 (a)			
	f(0.75) = -0.18 f(0.85) = 0.17	M1	
	Change of sign, hence root between x=0.75 and x=0.85	Al	
(b)	Sub $x_0=0.8$ into $x_{n+1} = [\arcsin(1-0.5x_n)]^{\frac{1}{2}}$ to obtain x_1	M1	
	Awrt x_1 =0.80219 and x_2 =0.80133	A1	
	Awrt $x_3 = 0.80167$	A1	
(-)			
(c)	$f(0.801565) = -2.7 \times 10^{-5}$ $f(0.801575) = +8.6 \times 10^{-6}$	M1A1	
	Change of sign and conclusion	A1	
		Al	

Question Number	Scheme	Marks	
3. (a)	f(1.2) = 0.49166551, $f(1.3) = -0.048719817Sign change (and as f(x) is continuous) therefore a root \alpha is such that \alpha \in [1.2, 1.3]$	M1A1	
(b)	$4\csc x - 4x + 1 = 0 \implies 4x = 4\csc x + 1$	M1	(2)
	$\Rightarrow x = \csc x + \frac{1}{4} \Rightarrow \underline{x} = \frac{1}{\sin x} + \frac{1}{4}$	A1 *	(2)
(c)	$x_1 = \frac{1}{\sin(1.25)} + \frac{1}{4}$	M1	
	$x_1 = 1.303757858, x_2 = 1.286745793$ $x_3 = 1.291744613$	A1 A1	(2)
(d)	f(1.2905) = 0.00044566695, f(1.2915) = -0.00475017278 Sign change (and as $f(x)$ is continuous) therefore a root α is such that	M1	(3)
	$\alpha \in (1.2905, 1.2915) \Rightarrow \alpha = 1.291 \text{ (3 dp)}$	A1	(2)
	 (a) M1: Attempts to evaluate both f(1.2) and f(1.3) and evaluates at least one of them correctly to awrt (or truncated) 1 sf. A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion. (b) M1: Attempt to make 4x or x the subject of the equation. A1: Candidate must then rearrange the equation to give the required result. It must be clear that candidate has made their initial f(x) = 0. (c) M1: An attempt to substitute x₀ = 1.25 into the iterative formula Eg = 1/sin(1.25) + 1/4. Can be implied by x₁ = awrt 1.3 or x₁ = awrt 46°. A1: Both x₁ = awrt 1.3038 and x₂ = awrt 1.2867 A1: x₃ = awrt 1.2917 (d) M1: Choose suitable interval for x, e.g. [1.2905, 1.2915] or tighter and at least one attempt to evaluate f(x). A1: both values correct to awrt (or truncated) 1 sf, sign change and conclusion. 		[9]

4 ()	2/2) 1 0 (2/ + 2) 1)	3.61	
4. (a)	$x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$)	M1	
	$x = \sqrt{\frac{1}{3 - x}} \tag{*}$	A1 (cso)	(2)
	Note($\$$), answer is given: need to see appropriate working and A1 is cso [Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1]		
(b)	$x_2 = 0.6455, x_3 = 0.6517, x_4 = 0.6526$	B1; B1	(2)
	1 st B1 is for one correct, 2 nd B1 for other two correct		
	If all three are to greater accuracy, award B0 B1		
(c)	Choose values in interval (0.6525, 0.6535) or tighter and evaluate both	M1	
(c)	f(0.6525) = -0.0005 (372 $f(0.6535) = 0.002$ (101	IVII	
	At least one correct "up to bracket", i.e0.0005 or 0.002	A1	
	Change of sign, $\therefore x = 0.653$ is a root (correct) to 3 d.p.	A1	(3)
	Requires both correct "up to bracket" and conclusion as above		
	•	(7 m	arks)
Alt (i)	Continued iterations at least as far as x_6 M1		
	$x_5 = 0.65268$, $x_6 = 0.6527$, $x_{7} = \dots$ two correct to at least 4 s.f. A1		
	Conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1		
Alt (ii)	If use $g(0.6525) = 0.6527 > 0.6525$ and $g(0.6535) = 0.6528 < 0.6535$ M1A1		
	Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1		

Question Number	Scheme	Marks	
7.	(a) $f(1.4) = -0.568 \dots < 0$		
	$f(1.45) = 0.245 \dots > 0$	M1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.45)$	A1	(2)
	(b) $3x^3 = 2x + 6$		
	$x^{3} = \frac{2x}{3} + 2$		
	$x^2 = \frac{2}{3} + \frac{2}{x}$	M1 A1	
	$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} \bigstar $ cso	A1	(3)
	(c) $x_1 = 1.4371$	B1	
	$x_2 = 1.4347$	B1	
	$x_3 = 1.4355$	B1	(3)
	(d) Choosing the interval $(1.4345, 1.4355)$ or appropriate tighter interval. f(1.4345) = -0.01	M1	
	$f(1.4355) = 0.003 \dots$	M1	
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4345, 1.4355)$		
	$\Rightarrow \alpha = 1.435$, correct to 3 decimal places * cso	A1	(3) [11]
	<i>Note</i> : $\alpha = 1.435304553$		

Question Number	Scheme		Mark	(S
Q1 (a)	Iterative formula: $x_{n+1} = \frac{2}{(x_n)^2} + 2$, $x_0 = 2.5$			
(b)	$x_1 = \frac{2}{(2.5)^2} + 2$ $x_1 = 2.32$ $x_2 = 2.371581451$ $x_3 = 2.355593575$ $x_4 = 2.360436923$ Let $f(x) = -x^3 + 2x^2 + 2 = 0$	An attempt to substitute $x_0 = 2.5$ into the iterative formula. Can be implied by $x_1 = 2.32$ or 2.320 Both $x_1 = 2.32(0)$ and $x_2 = \text{awrt } 2.372$ Both $x_3 = \text{awrt } 2.356$ and $x_4 = \text{awrt } 2.360$ or 2.36	M1 A1 A1 cso	(3)
	f(2.3585) = 0.00583577 f(2.3595) = -0.00142286 Sign change (and f(x) is continuous) therefore a root α is such that $\alpha \in (2.3585, 2.3595) \Rightarrow \alpha = 2.359$ (3 dp)	Choose suitable interval for x, e.g. [2.3585, 2.3595] or tighter any one value awrt 1 sf or truncated 1 sf both values correct, sign change and conclusion At a minimum, both values must be correct to 1sf or truncated 1sf, candidate states "change of sign, hence root".	M1 dM1 A1	(3)
				[6]

Question No	Scheme	Marks
6	(a) $f(0.8) = 0.082, f(0.9) = -0.089$	M1
	Change of sign \Rightarrow root (0.8,0.9)	A1
		(2)
	(b)	
	$f'(x) = 2x - 3 - \sin(\frac{1}{2}x)$	M1 A1
	Sets $f'(x) = 0 \Rightarrow x = \frac{3+\sin(\frac{1}{2}x)}{2}$	
	Sets $f(x) = 0 \Rightarrow x = \frac{1}{2}$	M1A1*
		(4)
	$3+\sin\left(\frac{1}{2}x_n\right)$	(4)
	(c) Sub $x_0=2$ into $x_{n+1} = \frac{3+\sin(\frac{1}{2}x_n)}{2}$	M1
	x_1 =awrt 1.921, x_2 =awrt 1.91(0) and x_3 =awrt 1.908	A1,A1
		(3)
	(d) [1.90775,1.90785]	M1
	f'(1.90775)=-0.00016 AND f'(1.90785)= 0.0000076	M1
	Change of sign \Rightarrow x=1.9078	A1
		(3)
		(12 marks)

Question Number	Scheme	Marks	
6.	(a) $y = \ln\left(4 - 2x\right)$		
	$e^y = 4 - 2x$ leading to $x = 2 - \frac{1}{2}e^y$ Changing subject and removing ln	M1 A1	
	$y = 2 - \frac{1}{2}e^x \implies f^{-1} \mapsto 2 - \frac{1}{2}e^x + $ cso	A1	
	Domain of f^{-1} is \square	B1	(4)
	(b) Range of f^{-1} is $f^{-1}(x) < 2$ (and $f^{-1}(x) \in \Box$)	B1	(1)
	(c) $f^{-1}(x)$		
	Shape 1.5 1.4	B1 B1 B1	
	$y=2$ $\ln 4$	В1	(4)
	(d) $x_1 \approx -0.3704$, $x_2 \approx -0.3452$ cao If more than 4 dp given in this part a maximum on one mark is lost. Penalise on the first occasion.	B1, B1	(2)
	(e) $x_3 = -0.35403019$ $x_4 = -0.35092688$ $x_5 = -0.35201761$ $x_6 = -0.35163386$ Calculating to at least x_6 to at least four dp $k \approx -0.352$ cao	M1 A1	(2)
	Alternative to (e) $k \approx -0.352$ Found in any way $\text{Let } g(x) = x + \frac{1}{2}e^{x}$		[13]
	$g(-0.3515) \approx +0.0003, g(-0.3525) \approx -0.001$	M1	
	Change of sign (and continuity) $\Rightarrow k \in (-0.3525, -0.3515)$ $\Rightarrow k = -0.352$ (to 3 dp)	A1	(2)