

		L
1.	$f(x) = x^3 + 3x^2 + 5.$	
Find		
(a) $f''(x)$,		
(b) $\int_{1}^{2} f(x) dx$.		(3)
(b) $\int_{1}^{1} I(x) dx$.		(4)

2. (a) In the space provided, sketch the graph of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of the point at which the graph meets the y-axis.

(2)

(b) Complete the table, giving the values of 3^x to 3 decimal places.

x	0	0.2	0.4	0.6	0.8	1
3 ^x		1.246	1.552			3

(2)

(c) Use the trapezium rule, with all the values from your table, to find an approximation for the value of $\int_0^1 3^x dx$.

(4)

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^3 - 8x^2 + 20x$. The curve has stationary points A and B.

(a) Use calculus to find the x-coordinates of A and B.

(4)

Leave blank

(b) Find the value of $\frac{d^2y}{dx^2}$ at A, and hence verify that A is a maximum.

(2)

The line through B parallel to the y-axis meets the x-axis at the point N. The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line from A to N.

(c) Find
$$\int (x^3 - 8x^2 + 20x) dx$$
.

(3)

(d) Hence calculate the exact area of R.

(5)

Evaluate $\int_{-\infty}^{8} \frac{1}{\sqrt{x}} dx$ giving your answer in t	he form $a + b\sqrt{2}$, where a and b are integers.
	(4)

5. The curve *C* has equation

$$y = x\sqrt{(x^3 + 1)}, \qquad 0 \leqslant x \leqslant 2.$$

(a) Complete the table below, giving the values of y to 3 decimal places at x = 1 and x = 1.5.

x	0	0.5	1	1.5	2
y	0	0.530			6

(2)

(b) Use the trapezium rule, with all the y values from your table, to find an approximation for the value of $\int_0^2 x \sqrt{(x^3+1)} dx$, giving your answer to 3 significant figures.

(4)

Figure 2

Figure 2 shows the curve C with equation $y = x\sqrt{(x^3 + 1)}$, $0 \le x \le 2$, and the straight line segment l, which joins the origin and the point (2, 6). The finite region R is bounded by C

(c) Use your answer to part (b) to find an approximation for the area of R, giving your answer to 3 significant figures.

(3)

Leave blank

	$y = \sqrt{(5^x + 2)}$
	2

6.

(a) Complete the table below, giving the values of y to 3 decimal places.

x	0	0.5	1	1.5	2
y			2.646	3.630	

(2)

for the value of $\int_0^2 \sqrt{(5^x+2)} dx$.			

Leave blank

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = 10 + 8x + x^2 - x^3$.

The curve has a maximum turning point A.

(a) Using calculus, show that the x-coordinate of A is 2.

(3)

The region R, shown shaded in Figure 2, is bounded by the curve, the y-axis and the line from O to A, where O is the origin.

(b) Using calculus, find the exact area of R.

(8)

8. Use calculus to find the value of $\int_{1}^{4} (2x + 3\sqrt{x}) dx$		Lea bla
$\int_{1}^{\infty} (2x+3+3) dx$	(5)	
		01
	(Total 5 marks)	Q1

3

9. (a) Complete the table below, giving values of $\sqrt{2^x + 1}$)to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
$\sqrt{(2^x+1)}$	1.414	1.554	1.732	1.957			3

(2)

Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \sqrt{2^x + 1}$, the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of R.

(4)

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of *R*.

(2)

$$y = 3^x + 2x$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	0	0.2	0.4	0.6	0.8	1
У	1	1.65				5

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_0^1 (3^x + 2x) \, dx$.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$y = x^3 - 10x^2 + kx,$$

where k is a constant.

The point P on C is the maximum turning point.

Given that the *x*-coordinate of *P* is 2,

(a) show that k = 28.

(3)

blank

The line through P parallel to the x-axis cuts the y-axis at the point N. The region R is bounded by C, the y-axis and PN, as shown shaded in Figure 2.

(b) Use calculus to find the exact area of R.

(6)

Leave blank

12.

Figure 1 shows a sketch of part of the curve C with equation

$$y = x(x-1)(x-5).$$

Use calculus to find the total area of the finite region, shown shaded in Figure 1, that is between x = 0 and x = 2 and is bounded by C, the x-axis and the line x = 2.

(9)

Figure 2

Leave blank

In Figure 2 the curve C has equation $y = 6x - x^2$ and the line L has equation y = 2x.

(a) Show that the curve C intersects the x-axis at x = 0 and x = 6.

(1)

(b) Show that the line L intersects the curve C at the points (0, 0) and (4, 8).

(3)

The region R, bounded by the curve C and the line L, is shown shaded in Figure 2.

(c) Use calculus to find the area of R.

(6)

Figure 1

Figure 1 shows part of the curve C with equation y = (1+x)(4-x).

The curve intersects the x-axis at x = -1 and x = 4. The region R, shown shaded in Figure 1, is bounded by C and the x-axis.

Use calculus to find the exact area of R.

-	_	`
(•	١
•	•	,

$$y = \sqrt{\left(10x - x_{\cdot}^2\right)}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	1	1.4	1.8	2.2	2.6	3
У	3	3.47			4.39	

(2)

(b)	Use the trapezium rule, with all the values of y from your table, to find an approximation
	For the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$.

(4)

Figure 2

The curve C has equation $y = x^2 - 5x + 4$. It cuts the x-axis at the points L and M as shown in Figure 2.

(a) Find the coordinates of the point L and the point M.

(2)

Leave blank

(b) Show that the point N(5, 4) lies on C.

(1)

(c) Find
$$\int (x^2 - 5x + 4) dx$$
.

(2)

The finite region R is bounded by LN, LM and the curve C as shown in Figure 2.

(d) Use your answer to part (c) to find the exact value of the area of R.

(5)

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = (x+1)(x-5)$$

The curve crosses the x-axis at the points A and B.

(a) Write down the x-coordinates of A and B.

(1)

The finite region R, shown shaded in Figure 1, is bounded by C and the x-axis.

(b) Use integration to find the area of R.

_	

$$y = \frac{5}{3x^2 - 2}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	2	2.25	2.5	2.75	3
у	0.5	0.38			0.2

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{2}^{3} \frac{5}{3x^{2}-2} dx$.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = \frac{5}{3x^2 - 2}$, x > 1.

At the points A and B on the curve, x = 2 and x = 3 respectively.

The region S is bounded by the curve, the straight line through B and (2, 0), and the line through A parallel to the y-axis. The region S is shown shaded in Figure 2.

(c) Use your answer to part (b) to find an approximate value for the area of S.

(3)

Use calculus to find the exact value $\int_{1}^{2} (3x^2 + 5 + 5)^2 dx$	x²)
	(5)