C3 Chapter 4 Numerical Methods

Lagra
Leave
hlonk

3.	$f(x) = \ln(x+2) - x + 1, x > -2, x \in \mathbb{R}$.	
((a) Show that there is a root of $f(x) = 0$ in the interval $2 < x < 3$.	(2)
((b) Use the iterative formula	
	$x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$	
	to calculate the values of x_1, x_2 and x_3 giving your answers to 5 decimal places.	(3)
((c) Show that $x = 2.505$ is a root of $f(x) = 0$ correct to 3 decimal places.	(2)
		(2

2.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

(2)

Leave blank

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .

(3)

(3)

(c) Show that $\alpha = 2.057$ correct to 3 decimal places.

4

(3)

2.
$$f(x) = 2\sin(x^2) + x - 2, \quad 0 \le x < 2\pi$$

(a) Show that f(x) = 0 has a root α between x = 0.75 and x = 0.85 (2)


The equation f(x) = 0 can be written as $x = \left[\arcsin(1 - 0.5x)\right]^{\frac{1}{2}}$.

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right)\right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places. (3)

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

Leave	
blank	

3.	$f(x) = 4 \csc x - 4x + 1$	where x is in radians

(a) Show that there is a root α of f(x) = 0 in the interval [1.2, 1.3].

(2)

(b) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{1}{\sin x} + \frac{1}{4} \tag{2}$$

(c) Use the iterative formula

$$x_{n+1} = \frac{1}{\sin x_n} + \frac{1}{4}, \quad x_0 = 1.25,$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By considering the change of sign of f(x) in a suitable interval, verify that $\alpha = 1.291$ correct to 3 decimal places.

(2)

6

Leave blank

$$f(x) = -x^3 + 3x^2 - 1.$$

(a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}. (2)$$

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(2)

(c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.

7.

$$f(x) = 3x^3 - 2x - 6$$

(a) Show that f(x) = 0 has a root, α , between x = 1.4 and x = 1.45

(2)

Leave blank

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)}, \quad x \neq 0.$$

(3)

(c) Starting with $x_0=1.43$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{2}{3}\right)}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(d) By choosing a suitable interval, show that $\alpha = 1.435$ is correct to 3 decimal places.

(3)

1.

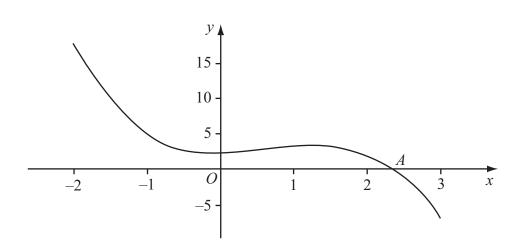


Figure 1

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where $x = \alpha$.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking $x_0 = 2.5$, find the values of x_1, x_2, x_3 and x_4 . Give your answers to 3 decimal places where appropriate.

(3)

blank

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

(3)

6.
$$f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x), \quad 0 \le x \le \pi$$

The curve with equation y = f(x) has a minimum point P.

(a) Show that the equation f(x)=0 has a solution in the interval 0.8 < x < 0.9 (2)

(-

(b) Show that the x-coordinate of P is the solution of the equation

$$x = \frac{3 + \sin\left(\frac{1}{2}x\right)}{2} \tag{4}$$

(c) Using the iteration formula

$$x_{n+1} = \frac{3 + \sin\left(\frac{1}{2}x_n\right)}{2}, \quad x_0 = 2$$

find the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(d) By choosing a suitable interval, show that the *x*-coordinate of *P* is 1.9078 correct to 4 decimal places.

(3)

6. The function f is defined by

$$f: x \mapsto \ln(4-2x), x < 2 \text{ and } x \in \mathbb{R}.$$

(a) Show that the inverse function of f is defined by

$$f^{-1}: x \mapsto 2 - \frac{1}{2}e^x$$

and write down the domain of f^{-1} .

(4)

(b) Write down the range of f^{-1} .

(1)

(c) In the space provided on page 16, sketch the graph of $y = f^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.

(4)

The graph of y = x + 2 crosses the graph of $y = f^{-1}(x)$ at x = k.

The iterative formula

$$x_{n+1} = -\frac{1}{2}e^{x_n}, \ x_0 = -0.3$$

is used to find an approximate value for k.

(d) Calculate the values of x_1 and x_2 , giving your answers to 4 decimal places.

(2)

(e) Find the value of k to 3 decimal places.

(2)