

- 1. A geometric series is $a + ar + ar^2 + ...$
 - (a) Prove that the sum of the first n terms of this series is given by

$$S_n = \frac{a(1-r^n)}{1-r}.$$

(b) Find

$$\sum_{k=1}^{10} 100(2^k).$$

(c) Find the sum to infinity of the geometric series

$$\frac{5}{6} + \frac{5}{18} + \frac{5}{54} + \dots$$

(3)

(4)

(3)

(d) State the condition for an infinite geometric series with common ratio r to be convergent.

(1)

The adult population of a town is 25 000 at the end of Year 1.
The adult population of a town is 25 000 at the end of Teal 1.
A model predicts that the adult population of the town will increase by 3% each year forming a geometric sequence.
(a) Show that the predicted adult population at the end of Year 2 is 25 750.
(a) show that the predicted addit population at the old of feat 2 is 25 750.
(b) Write down the common ratio of the geometric sequence.
(b) Write down the common ratio of the geometric sequence.
The model predicts that Year N will be the first year in which the adult population of town exceeds 40000 .
(c) Show that
$(N-1)\log 1.03 > \log 1.6$
(d) Find the value of <i>N</i> .
(d) Find the value of N.
At the end of each year, each member of the adult population of the town will give $\pounds 1$ a charity fund.
Assuming the population model,
(e) find the total amount that will be given to the charity fund for the 10 years from t
end of Year 1 to the end of Year 10, giving your answer to the nearest £1000.

• The fourth term of a geometric series is 10 and the seventh term of the series is 80.	
For this series, find	
(a) the common ratio,	
(w) the common rate,	(2)
(b) the first term,	
	(2)
(c) the sum of the first 20 terms, giving your answer to the nearest whole number.	
	(2)

		Le
4.	The first three terms of a geometric series are $(k + 4)$, k and $(2k - 15)$ respectively, where k is a positive constant.	
	(a) Show that $k^2 - 7k - 60 = 0$.	
	(4)	
	(b) Hence show that $k = 12$.	
	(2)	
	(c) Find the common ratio of this series.	
	(2)	
	(d) Find the sum to infinity of this series. (2)	
	(2)	

A car was purchased for £18000 on 1st January. On 1st January each following year, the value of the car is 80% of its value on 1st January each previous year.	nuary
(a) Show that the value of the car exactly 3 years after it was purchased is £9216.	(1)
The value of the car falls below £1000 for the first time n years after it was purchas	ed.
(b) Find the value of <i>n</i> .	(3)
An insurance company has a scheme to cover the maintenance of the car. The cost is £200 for the first year, and for every following year the cost increases by so that for the 3rd year the cost of the scheme is £250.88	12%
(c) Find the cost of the scheme for the 5th year, giving your answer to the nearest p	enny. (2)
(d) Find the total cost of the insurance scheme for the first 15 years.	(3)
	On 1st January each following year, the value of the car is 80% of its value on 1st January each following year. (a) Show that the value of the car exactly 3 years after it was purchased is £9216. The value of the car falls below £1000 for the first time <i>n</i> years after it was purchased (b) Find the value of <i>n</i> . An insurance company has a scheme to cover the maintenance of the car. The cost is £200 for the first year, and for every following year the cost increases by so that for the 3rd year the cost of the scheme is £250.88 (c) Find the cost of the scheme for the 5th year, giving your answer to the nearest property of the scheme is £250.88

The second and fifth terms of a geometric series are 750 and -6 respectively.	
Find	
(a) the common ratio of the series,	(3)
(b) the first term of the series,	(2)
(c) the sum to infinity of the series.	(2)

	1
Leave	
blank	

A geometric series has first term a	and common ratio r
	nd the sum to infinity of the series is 25.
(a) Show that $25r^2 - 25r + 4 = 0$.	
	(4)
(b) Find the two possible values of	`r
(b) I ma the two possible values of	(2)
(c) Find the corresponding two pos	
	(2)
(d) Show that the sum, S_n , of the fin	rst <i>n</i> terms of the series is given by
S	$r_n = 25(1 - r^n).$
~,	(1)
Giorna 41 - 4 - 4 - 41 - 1 6 i4 - 4	
Given that r takes the larger of its tv	wo possible values,
(e) find the smallest value of n for	which S_n exceeds 24.
	(2)

А	trading company made a profit of £50 000 in 2006 (Year 1).
7 1	arding company made a profit of 250 000 in 2000 (Teal 1).
	model for future trading predicts that profits will increase year by year in a geometric quence with common ratio $r, r > 1$.
Tł	ne model therefore predicts that in 2007 (Year 2) a profit of £50 000r will be made.
(a)	Write down an expression for the predicted profit in Year n . (1
Th	the model predicts that in Year n , the profit made will exceed £200 000.
(b)	Show that $n > \frac{\log 4}{\log r} + 1$.
	(3
Us	sing the model with $r = 1.09$,
(c)	find the year in which the profit made will first exceed £200 000,
(d)) find the total of the profits that will be made by the company over the 10 years from 2006 to 2015 inclusive, giving your answer to the nearest £10 000.
	(3

0	A geometric series has first term 5 and common ratio 4	
9.	A geometric series has first term 5 and common ratio $\frac{4}{5}$.	
	Calculate	
	(a) the 20th term of the series, to 3 decimal places,	
	(2)	
	(b) the sum to infinity of the series. (2)	
	Given that the sum to k terms of the series is greater than 24.95,	
	(c) show that $k > \frac{\log 0.002}{\log 0.8}$, (4)	
	(d) find the smallest possible value of k . (1)	
		- 1

		Leave
10. The third term of a geometric sequence is 324 and the sixth term is 96		
(a) Show that the common ratio of the sequence is $\frac{2}{3}$		
	(2)	
(b) Find the first term of the sequence.		
	(2)	
(c) Find the sum of the first 15 terms of the sequence.	(0)	
	(3)	
(d) Find the sum to infinity of the sequence.		
	(2)	