

	ſ
Lagra	
Leave	
11 1	
nlank	

- A diesel lorry is driven from Birmingham to Bury at a steady speed of v kilometres per hour. The total cost of the journey, £C, is given by
 C = \frac{1400}{v} + \frac{2v}{7}.
 (a) Find the value of v for which C is a minimum.
 - (b) Find $\frac{d^2C}{dv^2}$ and hence verify that C is a minimum for this value of v. (2)
- (c) Calculate the minimum total cost of the journey.

 (2)

2.

Figure 4

Figure 4 shows an open-topped water tank, in the shape of a cuboid, which is made of sheet metal. The base of the tank is a rectangle x metres by y metres. The height of the tank is x metres.

The capacity of the tank is 100 m³.

(a) Show that the area $A \text{ m}^2$ of the sheet metal used to make the tank is given by

$$A = \frac{300}{x} + 2x^2.$$

(4)

(b) Use calculus to find the value of x for which A is stationary.

(4)

(c) Prove that this value of x gives a minimum value of A.

(2)

(d) Calculate the minimum area of sheet metal needed to make the tank.

A solid right circular cylinder has radius r cm and height h cm.	
The total surface area of the cylinder is 800 cm^2 .	
(a) Show that the volume, $V \text{ cm}^3$, of the cylinder is given by	
$V = 400r - \pi r^3$	
	(4)
Given that r varies,	
(b) use calculus to find the maximum value of V , to the nearest cm ³ .	
	(6)
(c) Justify that the value of V you have found is a maximum.	(2)
	(2)

The curve C has equation $y = 12/(x^2 + \frac{3}{x^2} - 10)$ $x > 0$	
(a) Use calculus to find the coordinates of the turning point on <i>C</i> .	
	(7)
(b) Find $\frac{d^2y}{dx^2}$.	
dx	(2)
(c) State the nature of the turning point.	
	(1)

5. The volume $V \text{ cm}^3$ of a box, of height x cm, is given by

$$V = 4x(5-x)^2$$
, $0 < x < 5$

(a) Find $\frac{dV}{dx}$.

(4)

(b) Hence find the maximum volume of the box.

(4)

(c) Use calculus to justify that the volume that you found in part (b) is a maximum.

6.

Figure 4

Figure 4 shows a solid brick in the shape of a cuboid measuring 2x cm by x cm by y cm.

The total surface area of the brick is 600 cm².

(a) Show that the volume, $V \text{ cm}^3$, of the brick is given by

$$V = 200x - \frac{4x^3}{3}.$$

(4)

blank

Given that x can vary,

- (b) use calculus to find the maximum value of V, giving your answer to the nearest cm³. (5)
- (c) Justify that the value of V you have found is a maximum.

7.

Figure 2

Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian.

The volume of the box is 300 cm³.

(a) Show that the surface area of the box, $S \text{ cm}^2$, is given by

$$S = r^2 + \frac{1800}{r}$$

(5)

blank

(b) Use calculus to find the value of r for which S is stationary.

(4)

(c) Prove that this value of r gives a minimum value of S.

(2)

(d) Find, to the nearest cm^2 , this minimum value of S.

du			
(a) Find $\frac{dy}{dx}$.			(2)
(b) Given that <i>y</i> is dec	reasing at $x = 4$, find the se	t of possible values of k.	(2)