WELSH JOINT EDUCATION COMMITTEE

General Certificate of Secondary Education

CYD-BWYLLGOR ADDYSG CYMRU

Tystysgrif Gyffredinol Addysg Uwchradd

184/06

MATHEMATICS

INTERMEDIATE TIER PAPER 2

A.M. TUESDAY, 11 June 2002

(2 Hours)

Cen	tre Number
Can	didate's Name (in full)
•••••) ood#squi 20 ^{c)}
Can	didate's Examination Number
INS	TRUCTIONS TO CANDIDATES
1110	
	Write your centre number, name and candidate number in the spaces provided above.
	Answer all the questions in the spaces provided.
	Take π as 3·14 or use the π button on your calculator.
INI	FORMATION FOR CANDIDATES
10	A calculator will be required for this paper.
	A formula booklet is available and may be used.
	You should give details of your method of solution, especially when a calculator is used.
	Unless stated, diagrams are not drawn to scale.
	Scale drawing solutions will not be acceptable where you are asked to calculate.
	The number of marks is given in brackets at the end of each question or part-question.
	No certificate will be awarded to a candidate detected in any unfair practice during the examination.

For I	Examiner's us	e only
Question	Maximum Mark	Mark Awarded
1	6	
2	2	
3	4	
4	2	
5	5	
6	6	
7	6	7 3
8	3	
9	4	
10	4	
11	4	
12	4	-4
13	6	
14	3	
15	4	
16	6	
17	3	
18	3	
19	3	7
20	6	
21	3	
22	6	
23	7	
ТО	TAL	

1.	(a)	Calculate 26% of £34.					
	***************************************		•••••••••••••••••••••••••••••••••••••••	P SEFY SAGE	TT/ S/		
	1		1.4110	F 8217 187	(Mairy Ery)		
	(b)	The total cost of 8 load One loaf costs 93p. Fin	ves and 1	2 baguettes is st of one bagu	£15.48.	d	[2
	2				*		
	***************************************						FRO SULLA CONTRA
						s (ful m)	[4]
2.	The d	iagram below represents	s a numbo	er machine.			
				7	158	aneki sa maga	astoci – skelatani
	INPU	T	Add 7	-	Divide by 5		OUTPUT

If the input is x, write down the output in terms of x.

[2]

~	/ 1	Simplify		_	2 4
4	101	implify	10 -	. 7 -	- 30 - 4
20	(u)	DILLIPILLY	14	0	Ju T

 	 •

[2]

(b)	Find the	value o	of $4x + 3$	3y when $x = -$	6 and $y = 5$

[2]

[2]

[2]

5. (a) A solid cuboid measures 6.4 cm by 4.8 cm by 3.5 cm, as shown in the diagram. Calculate its volume, clearly stating the units of your answer.

					•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		••••••
							and the second	
								[3]
<i>(b)</i>	Calculate	the total s	urface area	of the cubo	oid.		7, 5, 4, 5, 6, 6	
								••••••

6.	Eight	by pupils were asked what they drank with their breakfast. Of these pupils, 36 drank	tea,
	18 dr	ank coffee, 16 drank milk and 10 drank other drinks.	
	(a)	What is the probability that a randomly chosen pupil	
		(i) drank coffee at breakfast,	
			[1]
		(ii) did not drink tea at breakfast?	
			[1]
	(b)	Draw a pie chart to illustrate the different drinks that the pupils had with their break You should show how you calculate the angles of your pie chart.	fast.

7.	Mr. and Mrs. Gann received their	r electricity bill. The	details wer	e as follows:	
	Present meter reading Previous meter reading	54261 52815			
	Charge per unit Service Charge	6.52 pence per unit £10.56			
	VAT	5%			
	Showing all your working, find the	ne total cost of the el	ectricity in	cluding VAT.	
				**	
			•••••		
					[6]

8. ABCD and ADEF are two parallelograms in which $\stackrel{\frown}{ADC} = 130^{\circ}$ and $\stackrel{\frown}{DEF} = 60^{\circ}$. Find $\stackrel{\frown}{BAF}$.

[3]

[3]

9. The weights of eighty eggs were measured and the results are summarised in the following table.

Weight (grams)	Number of eggs
50 ≤ weight < 60	7
60 ≤ weight < 70	13
70 ≤ weight < 80	29
80 ≤ weight < 90	20
90 ≤ weight < 100	11

(a) On the graph paper below, draw a grouped frequency diagram for the data.

(b) Write down the modal class.

(4)	1×3	2×4	3×5	4×6	×	
•••••••						[2
(b)			7 24			
		Much	improved			
		· · · · · · · · · · · · · · · · · · ·				[2
A gai	rdener is m	aking a circula	r lawn of radiu	s 6 m.		
(a)	Calculate	the area of the	lawn.			
						[2
-						[2
(b)				around the ci	rcumference of the law	
(b)		edging needed				n. Calculate th
(b)		edging needed			rcumference of the law	n. Calculate th
	length of	edging needed				n. Calculate th
	length of	edging needed				n. Calculate th
	length of	edging needed				n. Calculate th
	length of	edging needed				n. Calculate th

12. Beverley leaves home at 11.00 a.m. to go for a drive in her car. She travels a certain distance then stops for three quarters of an hour before starting back for home at a speed of 40 m.p.h.

The graph shows the first part of Beverley's journey up to the point where she stops.

(a) Calculate the speed for the first part of her journey.

[2]

- (b) On the graph paper, draw lines to represent
 - (i) her $\frac{3}{4}$ hour stop and
 - (ii) her return journey home.

decimation time apoller.

[2]

Distance (miles) from home

	increase is this?						
		h		-			

			*				
	==						
(b)	What will be interest per ann		if £5000 is inve	ested for 3 y	ears at the i	rate of 4%	comp
(b)	interest per ann	um?	<i>a</i>				LIGHT I
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?	if £5000 is inve				
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?	<i>a</i>				
(b)	interest per ann	um?					

	= 3
A solution to the equation	
$x^3 + 5x - 30 =$	= 0
lies between 2 and 3.	

BLANK PAGE

16. (a) The batting scores of 100 cricketers were recorded and the results are summarised in the following table.

Batting score	Frequency
0 - 19	20
20 - 39	45
40 - 59	24
60 - 79	9
80 - 99	2

On the graph paper, below draw a frequency polygon for the data.

[2]

Frequency

(b) Find an	estimate for the mea	n of the batting	scores.			
					to the second	
			••••••	•••••••		

				•••••		
					18	
			•••••			***********
						F 4
						14

17. The diameter of a circle, AB, is of length 8.7 cm, BC has length 5.4 cm and $ACB = 90^{\circ}$. Calculate the length of AC.

Diagram not drawn to scale.

[3]

18. ABCD is a rectangle.

- (a) Draw the locus of all the points inside the rectangle whose distance from AB is the same as their distance from AD.
- (b) Draw the locus of all the points inside the rectangle which are 6cm from DC.
- (c) Draw the locus of all the points inside the rectangle whose distance from A is the same as the length of AB.

[3]

19. Find, in standard form, the value o	19.	Find,	in	standard	form,	the	value	0
---	-----	-------	----	----------	-------	-----	-------	---

		0^{-4}),	$\times 10^{-5}) \times (3.9 \times 1)$	(a) (
[1]				
			9639	(1)
			·087 ·	<i>(b)</i>
[2]				

	Difference of the difference	
(b) Expand and sim	plify	
	(x+5)(x-6).	
(c) Make d the subjection	ect of the following formula.	
	$h = \sqrt{t - d}$	
Solve the following equ		
	$\frac{4x-8}{3} - \frac{x}{6} = 2$	

22. A vertical flagpole, BDC, stands on horizontal ground ABE. It is supported by two ropes AC and DE. The length of AC is 13.5 m, and the distance CD is 4.7 m. The rope AC makes an angle of 62° with the ground and the rope DE is fixed to the ground at E such that BE is 8.4 m.

Diagram not drawn to scale.

Calculate the size of BDE.		
*		
		andangs growth trott orbit. 15
	<u> </u>	
	1 1 1	
		[6]

23. Two bags contain some coloured balls, which are identical except for their colour. One ball is taken at random from each bag and their colours noted. The probability of the selected ball from the first bag being red is $\frac{1}{4}$. The probability of the selected ball from the second bag NOT being red is $\frac{2}{3}$.

(a) Complete the following tree diagram.

[2]

<i>(b)</i>	Calculate the probability that both balls are red.	
(c)	Calculate the probability that only one ball is red.	[2]

		[3]

120

[20] traps constant there is directly but to sent them; whence the proof that the probabilities of the probabilities and the probabilities and the probabilities of the collection that the matter than beginning of the sent to the probabilities of the sent to the bag terms the first probabilities of the sent to beginning that the sent to be the probabilities of the sent to be the bag from the sent and the Millians of the sent to be the bag from the sent and the Millians of the bag terms.

can Center have the Valleys are tree there also

gathan. - portunt

. 3

Hear Back

1/21/2020

Cub binto the participating that bette with participations

Culturius ing probability due sub-sus for it is not

