WELSH JOINT EDUCATION COMMITTEE

General Certificate of Secondary Education

CYD-BWYLLGOR ADDYSG CYMRU

Tystysgrif Gyffredinol Addysg Uwchradd

184/06

MATHEMATICS

INTERMEDIATE TIER PAPER 2

	A.M. FRIDAY, 16 November 2001
	(2 Hours)
Ce	ntre Number
Car	ndidate's Name (in full)
	teninser om er frihre Medicer sjel ut i v
Car	ndidate's Examination Number
IN	STRUCTIONS TO CANDIDATES
	Write your centre number, name and candidate number in the spaces provided above.
	Answer all the questions in the spaces provided.
	Take π as 3·14 or use the π button on your calculator.
INI	FORMATION FOR CANDIDATES
	A calculator will be required for this paper.
	A formula booklet is available and may be used.
	You should give details of your method of solution, especially when a calculator is used.
	Unless stated, diagrams are not drawn to scale.
	Scale drawing solutions will not be acceptable where you are asked to calculate.
	The number of marks is given in brackets at the end of each question or part-question.
	No certificate will be awarded to a candidate detected in any unfair practice during the examination.

Question	Maximum Mark	Mark Awarded
1	3	8
2	3	
3	5	
4	4	
5	4	
6	3	
7	2	
8	2	
9	5	
10	3	-
11	6	
12	5	
13.	6	
14	3	
15	3	
16	3	
17	4	1
18	3	
19	4	
20	6	
21	4	
22	6	
23	8	
24	5	
TOI	TAL	

	first day,	lays. The hire charg			
	each additional day.				
	ill was £405.				
For how ma	any days did she hire tl	he car?			
				••••••	***************************************
	***************************************		•••••	***************************************	
	,				
	,		••••••		

Find which	of $= 73\%$ and 0.7 is	the least and which	is the greatest		in .
Find which	of $\frac{5}{7}$, 73% and 0.7 is	the least and which	is the greatest.		
			is the greatest.		
	of $\frac{5}{7}$, 73% and 0.7 is show all your working		is the greatest.		i in
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
			is the greatest.		
You must s		g•			
You must s	show all your working	g•			
You must s	show all your working	g•		ich stalieni	

	ket on x occasions.	ng the season he buys a stand ticke				
	total cost of these stand tickets.	Write down, in terms of x , the to				
[1]						
and ticket. Write down, in		He buys a ticket for the terraces terms of x , how many terrace ticket				
[1]	9 18 792 5 1					
Write down, in terms of x , the total cost of these terrace tickets.						
[1]						
ught.		Write down, in terms of x , the to You must simplify your answer a				
[2]						

4. Some people were asked which of the various television channels they were watching at 8.15 p.m. on a certain day of the week. The results were as shown in the table.

Channel	Frequency
BBC1	30
BBC2	8
ITV	35
Channel 4	10
Channel 5	7

Draw a pie chart to illustrate this data. You should show how you calculate the angles of your pie chart.

5. The number of sweets in each of sixty packets was counted. The results were as follows.

Number of sweets	30	31	32	33	34
Number of packets	8	15	22	11	4

veets in it?	east 33 sweet	nas at ie	en packet	mry cno	i a randoi	юшцу ша	s the proba	WHAT IS
							•••••	***************************************
		-		·····				
		?	ltogether	packets	ere in the	s were the	any sweet	How m
••••••	•••••	•••••	***************************************		***************************************	•••••••••••••••••••••••••••••••••••••••		
		•••••		•••••••			•••••••••••••••••••••••••••••••••••••••	

6. Draw three shapes like the given one, so that the completed pattern has rotational symmetry of order 4 about *O*.

		0		
. 1				

7. The grid is made up of 1 cm squares. Find the exact area of the shape ABCD.

		Ž.		
~				
***************************************	*************************************	•••••	•••••	

appro	oximately in kilometre	s per hour? You must sh	low your working.	
				••••
Solve	e the following equation	ons.		
	4x - 9 = 7			
(b)	3x + 6 = 21 - 2x			
				••••
				••••
				••••

10.	Write	dowi	n, in terr	ns of n , t	the nth ter	m of each of the following sequences.
	(a)	9	18	27	36	
				•••••••		[1]
	(b)	1	8	15	22	

						[2]

11. (a)

					•••••
				7.7	
					•••••
In a race a ca	r completes the			our 45 minutes.	•••••
In a race a ca Calculate the	r completes the	e distance of 224 miles, in m.p.h., of the car.		our 45 minutes.	
Calculate the	average speed	e distance of 224 miles	in a time of 1 ho		
Calculate the	average speed	e distance of 224 miles, in m.p.h., of the car.	in a time of 1 ho		
Calculate the	average speed	e distance of 224 miles, in m.p.h., of the car.	in a time of 1 ho		
Calculate the	average speed	e distance of 224 miles, in m.p.h., of the car.	in a time of 1 ho		

12. (a) The table shows a grouped frequency distribution of the ages of 100 people at a concert.

Age x (in years)	Frequency
$0 < x \leqslant 20$	8
$20 < x \leqslant 40$	25
$40 < x \le 60$	42
$60 < x \leqslant 80$	21
$80 < x \le 100$	4

(i) On the graph paper below, draw a grouped frequency diagram for the data.

Frequency

[2]

(ii) Write down the modal group.

(b) Below is a grouped frequency diagram for a different 100 people at some other concert.

Frequency

Which concert, the first or the second, had the younger audience? You must explain your reasoning by making reference to the two frequency diagrams.

[2]

	Find the circumference of the pond, accuracy.		
			[3
<i>(b)</i>	Calculate the area of the surface of the p	pond, stating clearly the un	its of your answer.
		+ +	
			4
			[3
. Danie	el, Richard and Tina share £200 in the rati	io of 4:5:7	
Calcu	late how much each one receives.		

			a a constant
			r et green group
•••••			
•••••			

 ***************************************		7		

 	 	 		····

16. A ladder which is $7.6 \,\mathrm{m}$ long is placed against a vertical wall. The foot of the ladder rests on a horizontal floor and is $2.4 \,\mathrm{m}$ away from the bottom of the wall. Calculate how far the top of the ladder is above the floor.

Diagram not drawn to scale.

18	

17.

Diagram not drawn to scale.

trapezium $ABCD$, in which $AB = 9.3$ cm and D . The height of the bar is 3.5 cm and the length of	$C = 5.8 \mathrm{cm}$.		i the form of the
The density of the metal is 5.6 g/cm^3 . Calculate the weight, in kilograms, of the bar.	a tell many out		
		l New	1
	F	1	
			[4]

A solution to the equation		
1		
4	$x^3 - 5x - 66 = 0$	
lies between 4·4 and 4·5.		
lies between 4·4 and 4·5.	$x^3 - 5x - 66 = 0$ Exprovement to find this solution correct to 2 deci	mal places.
lies between 4·4 and 4·5.		mal places.
lies between 4·4 and 4·5.		mal places.
lies between 4·4 and 4·5.		mal places.
lies between 4·4 and 4·5.		mal places.
lies between 4·4 and 4·5.	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5.		
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	
lies between 4·4 and 4·5. Use the method of trial and im	provement to find this solution correct to 2 deci	

20. The table below shows a grouped frequency distribution for the number of empty seats on 90 flights from Heathrow to Florida.

Number of empty seats	Frequency
0 - 4	10
5 - 9	15
10 - 14	19
15 - 19	22
20 - 24	14
25 - 29	8
30 - 34	2

(a) On the graph paper below, draw a frequency polygon for the data.

[2]

Frequency

	The state of the s	
•••••	The figure of the control of the con	[4
(a) Wr	rite the following number in standard form.	
	0026	
0.0	1020	
		[1
(b) Fin	yd in standard form, the value of	[1
	nd, in standard form, the value of	[1
	and, in standard form, the value of $(8.5 \times 10^{-3}) \times (9.6 \times 10^{11}),$	[1
		[1
		[1
		[1
(i)	$(8.5 \times 10^{-3}) \times (9.6 \times 10^{11}),$ 4.27×10^{6}	
(i)	$(8.5 \times 10^{-3}) \times (9.6 \times 10^{11}),$ $\frac{4.27 \times 10^{6}}{6.54 \times 10^{-4}}.$	[1
(i)	$(8.5 \times 10^{-3}) \times (9.6 \times 10^{11}),$ 4.27×10^{6}	[1
(i)	$(8.5 \times 10^{-3}) \times (9.6 \times 10^{11}),$ $\frac{4.27 \times 10^{6}}{6.54 \times 10^{-4}}.$	[1

[2]

- 22. Vivienne has a fair cubical dice with its faces numbered from 1 to 6 and a biased dice for which the probability of throwing a 4 is $\frac{1}{3}$. She throws the two dice and notes whether or not a 4 is obtained on each dice.
 - (a) Complete the following tree diagram.

				101 24 CC 14 101 3 12 3	162 7
Calculate the	probability th	at exactly one dic	e shows 4.		

23.

(i)	$x^2 - 2x - 15$,		
(ii)	$6x^2 - 8xy.$		
Find	the equation of t	the line that passes through the points $(0, 8)$ and $(-2, 2)$.	
Find	the equation of t	the line that passes through the points $(0, 8)$ and $(-2, 2)$.	
		the line that passes through the points (0, 8) and (-2, 2).	

24.

Diagram not drawn to scale.

meet the lin	rectangle in TQ so th	at $\widehat{TSR} = 36$	diagonal \hat{ST}	$Q = 90^{\circ}$.	3 cm loi	ng. The I	ine ST is (drawn 10 c	em long to
Find TSQ a	and the leng	gth of RQ .							
									le F sa
						×			
									•••••
	1								
									[5]