

Mark Scheme January 2009

GCE

GCE Mathematics (8371/8373,9371/9373)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2009

Publications Code UA020941

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Edexcel Ltd 2009

Contents

1.	6663 Core Mathematics 1	5
2.	6664 Core Mathematics 2	17
3.	6665 Core Mathematics 3	29
4.	6666 Core Mathematics 4	37
5.	6674 Further Pure Mathematics 1 (legacy)	47
6.	6667 Further Pure Mathematics 1 (new)	55
7.	6677 Mechanics 1	65
8.	6678 Mechanics 2	71
9.	6679 Mechanics 3	77
10.	6683 Statistics 1	83
11.	6684 Statistics 2	89
12.	6689 Decision Mathematics 1	97

January 2009 6663 Core Mathematics C1 Mark Scheme

Que Nur	estion nber	Scheme	Ma	rks
1	(a)	5 (±5 is B0)	B1	(1)
	(b)	$\frac{1}{(\text{their 5})^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$	M1	
		$=\frac{1}{25}$ or 0.04 $(\pm\frac{1}{25}$ is A0)	A1	(2) [3]
	(b)	M1 follow through their value of 5. Must have reciprocal and square.		
		5^{-2} is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this.		
		A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0		
		$125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0.		
		Correct answer with no working scores both marks.		
		<u>Alternative</u> : $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{(125^2)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared)		
		$\left(=\frac{1}{\sqrt[3]{15625}}\right)$		
		$=\frac{1}{25}$ A1		

Question Number	Scheme	Marks
2	$(I =)\frac{12}{6}x^{6} - \frac{8}{4}x^{4} + 3x + c$ = 2x ⁶ - 2x ⁴ + 3x + c	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^n \rightarrow x^{n+1}$ (i.e. ax^6 or ax^4 or ax , where <i>a</i> is any non-zero constant). Also, this M mark can be scored for just the + <i>c</i> (seen at some stage), even if no other terms are correct. 1 st A1 for $2x^6$ 2 nd A1 for $-2x^4$ 3 rd A1 for $3x + c$ (or $3x + k$, etc., any appropriate letter can be used as the constant) Allow $3x^1 + c$, but <u>not</u> $\frac{3x^1}{1} + c$. Note that the A marks can be awarded at separate stages, e.g. $\frac{12}{6}x^6 - 2x^4 + 3x$ scores 2 nd A1 $\frac{12}{6}x^6 - 2x^4 + 3x + c$ scores 3 rd A1 $2x^6 - 2x^4 + 3x$ scores 1 st A1 (even though the <i>c</i> has now been lost).	
	Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^6 - 2x^4 + 3x + c dx$.	

Question Number	Scheme	Marks
3	$\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2$, or 7 - 4 or an exact equivalent such as $\sqrt{49} - 2^2 = 3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be <u>one wrong term</u> and <u>one wrong sign</u> , or <u>two wrong signs</u> . e.g. $7 + 2\sqrt{7} - 2\sqrt{7} - 2$ is M1 (one wrong term -2) $7 + 2\sqrt{7} + 2\sqrt{7} + 4$ is M1 (two wrong signs $+ 2\sqrt{7}$ and $+4$) $7 + 2\sqrt{7} + 2\sqrt{7} + 2$ is M1 (one wrong term $+2$, one wrong sign $+ 2\sqrt{7}$) $\sqrt{7} + 2\sqrt{7} - 2\sqrt{7} + 4$ is M1 (one wrong term $\sqrt{7}$, one wrong sign $+4$) $\sqrt{7} + 2\sqrt{7} - 2\sqrt{7} - 2$ is M0 (two wrong terms $\sqrt{7}$ and -2) $7 + \sqrt{14} - \sqrt{14} - 4$ is M0 (two wrong terms $\sqrt{14}$ and $-\sqrt{14}$) If only 2 terms are given, they must be correct, i.e. $(7 - 4)$ or an equivalent unsimplified version to score M1. The terms can be seen <u>separately</u> for the M1. Correct answer with <u>no working</u> scores both marks.	

Question Number	Scheme	Mar	ks
4	$\left(f(x)=\right)\frac{3x^3}{3} - \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - 7x(+c)$	M1	
	$= x^3 - 2x^{\frac{3}{2}} - 7x (+c)$	A1A1 M1	
	$f(4) = 22 \implies 22 = 64 - 16 - 28 + c$ $c = 2$	A1cso	(5)
			[5]
	1 st M1 for an attempt to integrate $(x^3 \text{ or } x^{\frac{3}{2}} \text{ seen})$. The <i>x</i> term is insufficient for this mark and similarly the + <i>c</i> is insufficient. 1 st A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) 2 nd A1 for all three <i>x</i> terms correct and simplified (the simplification may be seen later). The + <i>c</i> is not required for this mark. Allow $-7x^1$, but <u>not</u> $-\frac{7x^1}{1}$. 2 nd M1 for an attempt to use $x = 4$ and $y = 22$ in a changed function (even if differentiated) to form an equation in <i>c</i> . 3 rd A1 for <i>c</i> = 2 with no earlier incorrect work (a final expression for f(<i>x</i>) is not required).		

Question Number	Scheme	Marks
5 (a)	Shape \bigwedge , touching the x-axis at its maximum.	M1 A1 A1
(b)	Correct shape \bigvee (top left - bottom right) Through - 3 and max at (0, 0). Marked in the correct place, but 3, is B0. Min at (-2, -1)	(3) B1 B1 (3) [6]
(a)	 M1 as described above. Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 1st A1 for curve passing through -3 and the origin. Max at (-3,0) 2nd A1 for minimum at (-1,-1). Can simply be indicated on sketch. 	
(b)	 1st B1 for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. 2nd B1 for curve passing through (-3,0) having a max at (0, 0) and no other max. 3rd B1 for minimum at (-2,-1) and no other minimum. If in correct quadrant but labelled, e.g. (-2,1), this is B0. In each part the (0, 0) does <u>not</u> need to be written to score the second mark having the curve pass through the origin is sufficient. The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, (-2,-1) marked in the wrong quadrant). The mark for the minimum is <u>not</u> given for the coordinates just marked on the axes <u>unless</u> these are clearly linked to the minimum by vertical and horizontal lines. 	

Question Number	Scheme	Marks
6 (a)	$2x^{3/2}$ or $p = \frac{3}{2}$ (<u>Not</u> $2x\sqrt{x}$)	B1
(b)	$-x \text{or} -x^1 \text{or} q = 1$ $\left(\frac{dy}{dx}\right) = 20x^3 + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1$	B1 (2) M1
	$= \underline{20x^3 + 3x^{\frac{1}{2}} - 1}$	A1A1ftA1ft (4) [6]
(a)	$1^{st} B1 \text{for } p = 1.5 \text{ or exact equivalent} \\ 2^{nd} B1 \text{for } q = 1$	
(b)	M1 for an attempt to differentiate $x^n \to x^{n-1}$ (for any of the 4 terms) 1 st A1 for 20x ³ (the -3 must 'disappear') 2 nd A1ft for $3x^{\frac{1}{2}}$ or $3\sqrt{x}$. Follow through their <i>p</i> but they must be differentiating $2x^p$, where <i>p</i> is a fraction, and the coefficient must be simplified if necessary. 3 rd A1ft for -1 (not the unsimplified $-x^0$), or follow through for correct differentiation of their $-x^q$ (i.e. coefficient of x^q is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers with no common factors. Only a single + or – sign is allowed (e.g. – – must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). <u>Multiplying</u> by \sqrt{x} : (assuming this is a restart) e.g. $y = 5x^4\sqrt{x} - 3\sqrt{x} + 2x^2 - x^{\frac{3}{2}}$ $\left(\frac{dy}{dx} = \right)\frac{45}{2}x^{\frac{7}{2}} - \frac{3}{2}x^{-\frac{1}{2}} + 4x - \frac{3}{2}x^{\frac{1}{2}}$ scores M1 A0 A0 (<i>p</i> not a fraction) A1ft.	
	Extra term included: This invalidates the final mark. e.g. $y = 5x^4 - 3 + 2x^2 - x^{\frac{3}{2}} - x^{\frac{1}{2}}$ $\left(\frac{dy}{dx}\right) = 20x^3 + 4x - \frac{3}{2}x^{\frac{1}{2}} - \frac{1}{2}x^{-\frac{1}{2}}$ scores M1 A1 A0 (<i>p</i> not a fraction) A0. <u>Numerator and denominator differentiated separately</u> : For this, neither of the last two (ft) marks should be awarded. <u>Quotient/product rule</u> : Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

o (3)
o (3)
(4) [7]
titution a. efore sitive'. cing.
4). ** ks.

Question Number		Scheme	Mar	'ks
8	(a)	$(a=) (1+1)^2 (2-1) = 4$ (1, 4) or $y = 4$ is also acceptable	B1	(1)
	(D)	(i) Shape \checkmark or \checkmark anywhere	B1	
		$\begin{array}{c} 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	B1	
		(2, 0) and (0, 2) can be 2 on axes	B1	
		(ii) Top branch in 1 st quadrant with 2 intersections Bottom branch in 3 rd quadrant (ignore any	B1	
		intersections)	B1	(5)
	(c)	(2 intersections therefore) $\underline{2}$ (roots)	B1ft	(1) [7]
	 (b) 1st B1 for shape or Can be anywhere, but there must be one max. and one min further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line but there must be a discernible 'curve' at the max. and min. 2nd B1 for minimum at (-1,0) (even if there is an additional minimum point shown) 3rd B1 for the sketch meeting axes at (2, 0) and (0, 2). They can simply mark 2 on the ax The marks for minimum and intersections are dependent upon having a sketch. 		nin. and e segme axes. elsewher	no nts, [.] e.
		 4th B1 for the branch fully within 1st quadrant having 2 intersections with (not just 'touchin other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even wher appears to turn 'inwards' rather than approaching the axes, and when the curve look two straight lines with a small curve at the join. Allow, for example, shapes like these: 		
		5 th B1 for a branch fully in the 3 rd quadrant (ignore any intersections with the other curv branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even wh appears to turn 'inwards' rather than approaching the axes.		
	(c)	B1ft for a statement about the number of roots - compatible with their sketch. No sket The answer 2 <u>incompatible with the sketch</u> is B0 (ignore any algebra seen). If the sketch shows the 2 correct intersections <u>and</u> , for example, one other intersections answer here should be 3, not 2, to score the mark.		0. he

Ques Numi	estion nber		Marks	
9	(a) (b)	a + 17d = 25 or equiv. (for 1 st B1), $a + 20d = 32.5$ or equiv. (for 2 nd B1), <u>Solving</u> (Subtract) $3d = 7.5$ so $d = 2.5$ $a = 32.5 - 20 \times 2.5$ so $a = -17.5$ (*)	B1, B1 M1 A1cso	(2) (2)
	(c)	$2750 = \frac{n}{2} \left[-35 + \frac{5}{2} \left(n - 1 \right) \right]$	M1A1ft	
		$4 \times 550 = n(n-15)$	M1	
		$n^2 - 15n = 55 \times 40$ (*)	A1cso	(4)
	(d)	$\frac{n^{2} - 15n - 55 \times 40}{(n - 55)(n + 40) = 0} \text{or} n^{2} - 15n - 2200 = 0$ $(n - 55)(n + 40) = 0 \qquad n = \dots$ $\underline{n = 55} \text{(ignore - 40)}$	M1 M1 A1	(3)
		Mark parts (a) and (b) as 'one part', ignoring labelling.		[]
	(a)	<u>Alternative</u> : $1^{\text{st}} \text{B1:} d = 2.5 \text{ or equiv. or } d = \frac{32.5 - 25}{2}$. No method required, but $a = -17.5$ must not	t be assu	med.
	(b)	 2nd B1: Either a + 17d = 25 or a + 20d = 32.5 seen, or used with a value of d or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms. M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution without assuming a = -17.5 In alternative scheme: for using a d value to find a value for a. 	on for <i>d</i> o	or a
		A1: Finding correct values for both a and d (allowing equiv. fractions such as $d = \frac{15}{6}$),	with no	
		6 incorrect working seen.		
	(c)	In the main scheme, if the given a is used to find d from one of the equations, then allow both values are <u>checked</u> in the 2 nd equation.	w M1A1	if
	(d)	1 st M1 for attempt to form equation with correct S_n formula and 2750, with values of 1 st A1ft for a correct equation following through their <i>d</i> . 2 nd M1 for expanding and simplifying to a 3 term quadratic. 2 nd A1 for correct working leading to printed result (no incorrect working seen).	<i>a</i> and <i>d</i> .	
		1 st M1 forming the correct $3TQ = 0$. Can condone missing "= 0" but all terms must be First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to 2^{nd} M1 for attempt to solve 3TQ, by factorisation, formula or completing the square (see marking principles at end of scheme). If this mark is earned for the 'completing method or if the factors are written down directly, the 1 st M1 is given by implic A1 for <i>n</i> = 55 dependent on both Ms. Ignore – 40 if seen. <u>No working</u> or 'trial and improvement' methods in (d) score all 3 marks for the answer otherwise no marks.	e on one b be scor ce genera the squa ation. 55,	side. ed). al are'

Ques Num	tion ber	Scheme	Marks
10	(a)	$y-5 = -\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2} = -\frac{1}{2}$, $y = -\frac{1}{2}x+6$	M1A1, A1cao (3)
	(b)	$x = -2 \Rightarrow y = -\frac{1}{2}(-2) + 6 = 7$ (therefore <i>B</i> lies on the line)	B1 (1)
	(c)	(or equivalent verification methods) $(AB^2 =) (2 - 2)^2 + (7 - 5)^2$, $= 16 + 4 = 20$, $AB = \sqrt{20} = 2\sqrt{5}$	M1, A1, A1 (3)
	(d)	<i>C</i> is $(p, -\frac{1}{2}p+6)$, so $AC^2 = (p-2)^2 + \left(-\frac{1}{2}p+6-5\right)$ Therefore $25 = p^2 - 4p + 4 + \frac{1}{2}p^2 - p + 1$	M1
		$25 = 1.25n^2 - 5n + 5 \text{ or } 100 = 5n^2 - 20n + 20 \text{ (or better RHS simplified to 3 terms)}$	A1
		Leading to: $0 = p^2 - 4p - 16$ (*)	A1cso (4) [11]
	(a) (b)	 M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. y - y₁ = m(x - x₁)) is seen, otherwise M0. If (2, 5) is substituted into y = mx + c to find c, the M mark is for attempting this and the 1st A mark is for c = 6. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through (-2,7) with gradient -¹/₂ has the same eqn. as found in part (a), 	
		or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient.	
	(C)	M1 for attempting AB^2 or AB . Allow one slip (sign or number) <u>inside</u> a bracket, i.e. do <u>not</u> allow $(22)^2 - (7 - 5)^2$. 1 st A1 for 20 (condone bracketing slips such as $-2^2 = 4$) 2 nd A1 for $2\sqrt{5}$ or $k = 2$ (Ignore ± here).	
	(d)	 1st M1 for (p-2)² + (linear function of p)². The linear function may be unsimplified but must be equivalent to ap + b, a ≠ 0, b ≠ 0. 2nd M1 (dependent on 1st M) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. 1st A1 for collecting like p terms and having a correct expression. 2nd A1 for correct work leading to printed answer. Alternative, using the result: Solve the quadratic (p = 2±2√5) and use one or both of the two solutions to find the length of AC² or C₁C₂²: e.g. AC² = (2+2√5-2)² + (5-√5-5)² scores 1st M1, and 1st A1 if fully correct. 	
		Finding the length of AC or AC^2 for both values of p, or finding C_1C_2 with some evidence of halving (or intending to halve) scores the 2 nd M1.	
		Getting $AC = 5$ for both values of p, or showing $\frac{1}{2}C_1C_2 = 5$ scores the 2 nd A1 (cso).	

Question Number		Scheme	Mark	s
11	(a)	$\left(\frac{dy}{dx}\right) - 4 + 8x^{-2} (4 \text{ or } 8x^{-2} \text{ for } M1 \text{ sign can be wrong})$ $x - 2 \implies m4 + 22$	M1A1 M1	
		$x = 2 \implies m = -4 + 2 = -2$ The first 4 marks <u>could</u> be earned in part (b) $y = 9 - 8 - \frac{8}{2} = -3$	B1	
		Equation of tangent is: $y+3 = -2(x-2) \rightarrow y = 1-2x$ (*)	M1 A1cs	50 (6)
	(b)	Gradient of normal = $\frac{1}{2}$	B1ft	
		Equation is: $\frac{y+3}{x-2} = \frac{1}{2}$ or better equivalent, e.g. $y = \frac{1}{2}x - 4$	M1A1	
	(c)	$(A:) \frac{1}{2}, \qquad (B:) 8$	B1, B1	(3)
		Area of triangle is: $\frac{1}{2}(x_B \pm x_A) \times y_P$ with values for all of x_B, x_A and y_P	M1	
		$\frac{1}{2}\left(8-\frac{1}{2}\right) \times 3 = -\frac{45}{4}$ or 11.25	A1	(4) [13]
	(a)	1^{st} M1 for 4 or $8x^{-2}$ (ignore the signs). 1^{st} A1 for both terms correct (including signs).		
		2^{nd} M1 for substituting $x = 2$ into their $\frac{dy}{dx}$ (must be different from their y)		
		B1 for $y_P = -3$, but not if clearly found from the given equation of the <u>tangent</u> .		
		3^{10} M1 for attempt to find the equation of tangent at P, follow through their m and y_P .		
		<u>NO DIFFERENTIATION ATTEMPTED</u> : Just assuming $m = -2$ at this stage i 2 nd A1cso for correct work leading to printed answer (allow equivalents with 2x, y, and such as $2x + y - 1 = 0$).	s M0 1 terms.	
	(b)	B1ft for correct use of the perpendicular gradient rule. Follow through their m , but i there must be clear evidence that the m is thought to be the gradient of the tange	f $m \neq -2$ ent.	
		M1 for an attempt to find normal at P using their changed gradient and their y_P . Apply general principles for straight line equations (see end of scheme)		
	<i>(</i>)	A1 for any correct form as specified above (correct answer only).		
	(C)	$1^{\text{st}} \text{B1 for } \frac{1}{2} \text{ and } 2^{\text{nd}} \text{B1 for 8.}$		
		M1 for a full method for the area of triangle <i>ABP</i> . Follow through their x_A, x_B and	their y_P ,	but
		the mark is to be awarded 'generously', condoning sign errors The final answer must be positive for A1, with negatives in the working condor	ned.	
		<u>Determinant</u> : Area = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1 \end{vmatrix} = \dots$ (Attempt to multiply out requ	ired for N	M1)
		<u>Alternative</u> : $AP = \sqrt{(2-0.5)^2 + (-3)^2}$, $BP = \sqrt{(2-8)^2 + (-3)^2}$, Area $= \frac{1}{2}AP \times BP = .$	M1	
		Intersections with <i>y</i> -axis instead of <i>x</i> -axis: Only the M mark is available B0 B0 M1 A0.		

January 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks	
1	$(3-2x)^5 = 243$, $+5 \times (3)^4 (-2x) = -810x$	B1, B1	
	$+\frac{5\times4}{2}(3)^3(-2x)^2 = +1080x^2$	M1 A1	(4)
	_		[4]
Notes	First term must be 243 for B1 , writing just 3^5 is B0 (Mark their final answe second line of special cases below). Term must be simplified to $-810x$ for B1 The <i>x</i> is required for this mark. The method mark (M1) is generous and is awarded for an attempt at Binor	rs except in nial to get th	ne
	There must be an x^2 (or no x- i.e. not wrong power) and attempt at Binomia and at dealing with powers of 3 and 2. The power of 3 should not be one, bu 2 may be one (regarded as bracketing slip).	al Coefficier at the power	nt of
	So allow $\binom{5}{2}$ or $\binom{5}{3}$ or ${}^{5}C_{2}$ or ${}^{5}C_{3}$ or even $\binom{5}{2}$ or $\binom{5}{3}$ or use of '10' (m	aybe from	
	Pascal's triangle)		
	May see ${}^{5}C_{2}(3)^{3}(-2x)^{2}$ or ${}^{5}C_{2}(3)^{3}(-2x^{2})$ or ${}^{5}C_{2}(3)^{5}(-\frac{2}{3}x^{2})$ or $10(3)^{3}(2x)^{2}x^{2}$	which would	l
	each score the M1		
	A1 is c.a.o and needs $1080x^2$ (if $1080x^2$ is written with no working this is a marks i.e. M1 A1.)	warded both	1
Special	$243+810x+1080x^2$ is B1B0M1A1 (condone no negative signs)		
Cases	Follows correct answer with $27-90x+120x^2$ can isw here (sp case)– full a correct answer	marks for	
	Misreads <i>ascending</i> and gives $-32x^5 + 240x^4 - 720x^3$ is marked as B1B0M case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1\pm 2x)^5$ is 0 /4	1A0 special	l
	243, $-810x$, $1080x^2$ is full marks but 243, -810 , 1080 is B1,B0,M1,A0		
	NB Alternative method $3^5(1-\frac{2}{3}x)^5 = 3^5 - 5 \times 3^5 \times (\frac{2}{3}x) + (\frac{5}{3})3^5(-\frac{2}{3}x)^2 +$ is	B0B0M1A	0
	– answers must be simplified to $243 - 810x + 1080x^2$ for full marks (awarded	d as before)	
	Special case $3(1-\frac{2}{3}x)^5 = 3-5 \times 3 \times (\frac{2}{3}x) + {\binom{5}{3}} 3(-\frac{2}{3}x)^2 +$ is B0, B0, M1, A	.0	
	Or $3(1-2x)^5$ is B0B0M0A0		

Question Number	Scheme	Marks
2	$y = (1 + x)(4 - x) = 4 + 3x - x^2$ M: Expand, giving 3 (or 4) terms	M1
	$\int (4+3x-x^2) dx = 4x + \frac{3x^2}{2} - \frac{x^3}{3}$ M: Attempt to integrate	M1 A1
	$= \left[\dots \right]_{-1}^{4} = \left(16 + 24 - \frac{64}{3} \right) - \left(-4 + \frac{3}{2} + \frac{1}{3} \right) = \frac{125}{6} \qquad \left(= 20\frac{5}{6} \right)$	M1 A1 (5) [5]
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithme $1 \times 4 = 5$, but there needs to be a 'constant' an 'r term' and an 'r' term'. The	etical error e.g.
	not need to be collected. (Need not be seen if next line correct)	
	Attempt to integrate means that $x^n \rightarrow x^{n+1}$ for at least one of the terms, then awarded (even 4 becoming $4x$ is sufficient) – one correct power sufficient.	n M1 is
	A1 is for correct answer only, not follow through. But allow $2x^2 - \frac{1}{2}x^2$ or an	ny correct
	equivalent. Allow $+ c$, and even allow an evaluated extra constant term.	
	M1 : Substitute limit 4 and limit -1 into a changed function (must be -1) and subtraction (either way round).	d indicate
	A1 must be exact, not 20.83 or similar. If recurring indicated can have the more than Negative area, even if subsequently positive loses the A mark.	nark.
Special cases	 (i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answ 0, 1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus – 0/5 unless expansion mark (iii) Using original method, but then change all signs after expansion is like M1 M1 A0, M1 A0 i.e. 3/5 	wer correct, so k M1 gained. ly to lead to:

Question Number	Scheme	Marks
3 (a)	3.84, 4.14, 4.58 (Any one correct B1 B0. All correct B1 B1)	B1 B1 (2)
(b)	$\frac{1}{2} \times 0.4$, {(3+4.58)+2(3.47+3.84+4.14+4.39)}	B1, M1 A1ft
	= 7.852 (awrt 7.9)	A1 (4) [6]
Notes (a)	B1 for one answer correct Second B1 for all three correct	
	Accept awrt ones given or exact answers so $\sqrt{21}$, $\sqrt{\left(\frac{369}{25}\right)}$ or $\frac{3\sqrt{41}}{5}$, and	$\sqrt{\left(\frac{429}{25}\right)}$ or
	$\frac{\sqrt{429}}{5}$, score the marks.	
(b)	B1 is for using 0.2 or $\frac{0.4}{2}$ as $\frac{1}{2}h$.	
	M1 requires first bracket to contain first plus last values and second bracket to include no additional values from those in the table. If the only mistake is to omit one value from 2^{nd} bracket this may be regaced can be allowed (An extra repeated term forfeits the M mark however) <i>x</i> values: M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values. Separate trapezia may be used : B1 for 0.2, M1 for $\frac{1}{2}h(a+b)$ used 4 or 5 tim e.g. $0.2(3+3.47)+0.2(3.47+3.84)+0.2(3.84+4.14)+0.2(4.14+4.58)$ is R equivalent to missing one term in {} in main scheme A1ft follows their answers to part (a) and is for {correct expression}	arded as a slip an nes (and A1ft all M1 A0
	Final A1 must be correct. (No follow through)	
Special cases	Bracketing mistake: i.e. $\frac{1}{2} \times 0.4(3+4.58) + 2(3.47+3.84+4.14+4.39)$	
	scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given).	
	Need to see trapezium rule – answer only (with no working) is 0/4.	

Question Number	Scheme	Marks
4	$2\log_5 x = \log_5(x^2), \qquad \log_5(4-x) - \log_5(x^2) = \log_5\frac{4-x}{x^2}$	B1, M1
	$\log\left(\frac{4-x}{x^2}\right) = \log 5$ $5x^2 + x - 4 = 0$ or $5x^2 + x = 4$ o.e.	M1 A1
	$(5x-4)(x+1) = 0$ $x = \frac{4}{5}$ $(x = -1)$	dM1 A1 (6) [6]
Notes	B1 is awarded for $2\log x = \log x^2$ anywhere. M1 for correct use of $\log A - \log B = \log \frac{A}{B}$ M1 for replacing 1 by $\log_k k$. A1 for correct quadratic $(\log(4-x) - \log x^2 = \log 5 \Rightarrow 4 - x - x^2 = 5$ is B1M0M1A0 M0A0) dM1 for attempt to solve quadratic with usual conventions. (Only award if M marks have been awarded) A1 for 4/5 or 0.8 or equivalent (Ignore extra answer).	f previous two
Alternative 1	$\log_{5}(4-x) - 1 = 2\log_{5} x \text{ so } \log_{5}(4-x) - \log_{5} 5 = 2\log_{5} x$ $\log_{5} \frac{4-x}{5} = 2\log_{5} x$ then could complete solution with $2\log_{5} x = \log_{5}(x^{2})$ $\left(\frac{4-x}{5}\right) = x^{2} \qquad 5x^{2} + x - 4 = 0$ Then as in first method $(5x-4)(x+1) = 0 \qquad x = \frac{4}{5} \qquad (x = -1)$	M1 M1 B1 A1 dM1 A1 (6) [6]
Special cases	Complete trial and error yielding 0.8 is M3 and B1 for 0.8 A1, A1 awarded for each of two tries evaluated. i.e. 6/6 Incomplete trial and error with wrong or no solution is 0/6 Just answer 0.8 with no working is B1 If log base 10 or base e used throughout - can score B1M1M1A0M1A0	

Question Number	Scheme	Marks
5 (a)	<i>PQ</i> : $m_1 = \frac{10-2}{9-(-3)}$ (= $\frac{2}{3}$) and <i>QR</i> : $m_2 = \frac{10-4}{9-a}$	M1
(b) Alt for (a)	$m_1 m_2 = -1: \frac{8}{12} \times \frac{6}{9-a} = -1 \qquad a = 13 \qquad (*)$ (a) Alternative method (Pythagoras) Finds all three of the following	M1 A1 (3)
(d)	$(9-(-3))^2 + (10-2)^2$, (<i>i.e.</i> 208), $(9-a)^2 + (10-4)^2$, $(a-(-3))^2 + (4-2)^2$ Using Pythagoras (correct way around) e.g. $a^2 + 6a + 9 = 240 + a^2 - 18a + 81$ to form equation Solve (or verify) for <i>a</i> , $a = 13$ (*) (b) Centre is at (5, 3)	M1 M1 A1 (3) B1
	$(r^2 =) (10-3)^2 + (9-5)^2$ or equiv., or $(d^2 =) (13-(-3))^2 + (4-2)^2$ $(x-5)^2 + (y-3)^2 = 65$ or $x^2 + y^2 - 10x - 6y - 31 = 0$	M1 A1 M1 A1 (5)
Alt for (b)	Uses $(x-a)^2 + (y-b)^2 = r^2$ or $x^2 + y^2 + 2gx + 2fy + c = 0$ and substitutes (-3, 2), (9, 10) and (13, 4) then eliminates one unknown Eliminates second unknown	M1 M1
Netze	Obtains $g = -5$, $f = -3$, $c = -31$ or $a = 5$, $b = 3$, $r^2 = 65$	A1, A1, B1cao (5) [8]
Notes (a)	M1-considers gradients of PQ and QR -must be y difference / x difference (or considers three lengths as in alternative method) M1 Substitutes gradients into product = -1 (or lengths into Pythagoras' Theorem correct way round) A1 Obtains $a = 13$ with no errors by solution or verification. Verification can sco	the re 3/3.
(b)	Geometrical method: B1 for coordinates of centre – can be implied by use in par	t (b)
	M1 for attempt to find r^2 , d^2 , r or d (allow one slip in a bracket).	
	A1 cao. These two marks may be gained implicitly from circle equation	
	M1 for $(x \pm 5)^2 + (y \pm 3)^2 = k^2$ or $(x \pm 3)^2 + (y \pm 5)^2 = k^2$ ft their (5,3) Allow k^2 n numerical.	on
	A1 cao for whole equation and rhs must be 65 or $(\sqrt{65})^2$, (similarly B1 must be	65 or
	$\left(\sqrt{65}\right)^2$, in alternative method for (b))	

Question Number	Scheme	Marks
Further alternatives	(i) A number of methods find gradient of PQ = 2/3 then give perpendicular gradient is $-3/2$ This is M1 They then proceed using equations of lines through point Q or by using gradient QR to obtain equation such as $\frac{4-10}{a-9} = -\frac{3}{2}$ M1 (may still have x in this equation rather than a and there may be a small slip) They then complete to give (a) = 13 A1 (ii) A long involved method has been seen finding the coordinates of the	M1 M1 A1 M1
	centre of the circle first. This can be done by a variety of methods Giving centre as (c, 3) and using an equation such as $(c-9)^2 + 7^2 = (c+3)^2 + 1^2$ (equal radii) or $\frac{3-6}{c-3} = -\frac{3}{2}$ M1 (perpendicular from centre to chord bisects chord)	
	Then using $c (= 5)$ to find a is M1	M1
	Finally $a = 13$ A1	A1
	(iii) Vector Method: States PO OB = 0, with vectors stated 12i +8i and $(9 - a)i + 6i$ is M1	M1
	Evaluates scalar product so $108 - 12a + 48 = 0$ (M1)	M1
	Solves to give $u = 15$ (A1)	A1

Question Number	Scheme	Marks
6 (a)	f(2) = 16 + 40 + 2a + b or $f(-1) = 1 - 5 - a + b$	M1 A1
	Finds 2nd remainder and equates to $1 \text{ st} \Rightarrow 16 + 40 + 2a + b = 1 - 5 - a + b$	M1 A1
(b)	a = -20 f(-3) = (-3) ⁴ + 5(-3) ³ - 3a + b = 0	A1cso (5) M1 A1ft
	81 - 135 + 60 + b = 0 gives $b = -6$	A1 cso (3) [81
Alternative for (a)	(a) Uses long division, to get remainders as $b + 2a + 56$ or $b - a - 4$ or correct equivalent	M1 A1
	Uses second long division as far as remainder term, to get b + 2a + 56 = b - a - 4 or correct equivalent a = -20	M1 A1 A1cso (5)
Alternative for (b)	(b) Uses long division of $x^4 + 5x^3 - 20x + b$ by $(x + 3)$ to obtain $x^3 + 2x^2 - 6x + a + 18$ (with their value for <i>a</i>)	M1 A1ft
	Giving remainder $b + 6 = 0$ and so $b = -6$	A1 cso (3) [8]
Notes (a)	M1 : Attempts $f(\pm 2)$ or $f(\pm 1)$ A1 is for the answer shown (or simplified with terms collected) for or M1: Attempts other remainder and puts one equal to the other A1: for correct equation in <i>a</i> (and <i>b</i>) then A1 for $a = -20$ cso	e remainder
(b)	M1 : Puts $f(\pm 3) = 0$	
	A1 is for $f(-3) = 0$, (where f is original function), with no sign or substitution (follow through on 'a' and could still be in terms of a) A1: $b = -6$ is cso.	titution errors
Alternatives	(a) M1: Uses long division of $x^4 + 5x^3 + ax + b$ by $(x \pm 2)$ or by $(x \pm 1)$ as term quotient A1: Obtains at least one correct remainder	far as three
	 M1: Obtains at least one correct remainder M1: Obtains second remainder and puts two remainders (no <i>x</i> terms) e A1: correct equation A1: correct answer <i>a</i> = -20 following correct w (b) M1: complete long division as far as constant (ignore remainder) 	equal vork.
	A1ft: needs correct answer for their <i>a</i>	
Rowaro. It is	Al: correct answer possible to get correct answers with wrong working. If remainders are of	unated to 0 in
part (a) both	correct answers are obtained fortuitously. This could score M1A1M0A0A0	M1A1A0

Ques Num	tion ber	Scheme	Marks	5
7	(a)	$\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 2.2 = 39.6$ (cm ²)	M1 A1	(2)
	(b)	$\left(\frac{2\pi - 2.2}{2}\right) = \pi - 1.1 = 2.04$ (rad)	M1 A1	(2)
		(c) $\Delta DAC = \frac{1}{2} \times 6 \times 4 \sin 2.04$ (\$\approx 10.7)	M1 A1ft	
		Total area = sector + 2 triangles = 61 (cm^2)	M1 A1	(4) [8]
	(a)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula.		
		A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a).		
	(b)	M1: Needs full method to give angle in radians A1: Allow answers which round to 2.04 (Just writes 2.04 – no working i	s 2/2)	
	(c)	M1: Use $\frac{1}{2} \times 6 \times 4 \sin A$ (if any other triangle formula e.g. $\frac{1}{2}b \times h$ is use	d the meth	od
		 must be complete for this mark) (No value needed for A, but should not I A1: ft the value obtained in part (b) – need not be evaluated- could be in M1: Uses Total area = sector + 2 triangles or other complete method A1: Allow answers which round to 61. (Do not need units) 	be using 2.2 n degrees	2)
		Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use $\Delta BDC - \Delta BAC$ Both areas needed for first M1 Total area = sector + area found is second M1 NB Just finding lengths BD, DC, and angle BDC then assuming area BDC is find area BDC is 0/4	is a sector t	0

Question Number	Scheme	Marks	
8 (a)	$4(1 - \cos^2 x) + 9\cos x - 6 = 0 \qquad 4\cos^2 x - 9\cos x + 2 = 0 (*)$	M1 A1	(2)
(b)	$(4\cos x - 1)(\cos x - 2) = 0$ $\cos x =, \frac{1}{4}$	M1 A1	
	$x = 75.5 \qquad (\alpha)$	B1	
	$360 - \alpha$, $360 + \alpha$ or $720 - \alpha$	M1, M1	
	284.5, 435.5, 644.5	A1	(6) [8]
(a)	M1: Uses $\sin^2 x = 1 - \cos^2 x$ (may omit bracket) not $\sin^2 x = \cos^2 x - 1$ A1: Obtains the printed answer without error – must have = 0		
(b)	M1: Solves the quadratic with usual conventions A1: Obtains ¹ / ₄ accurately- ignore extra answer 2 but penalise e.g2. B1: allow answers which round to 75.5 M1: $360 - \alpha$ ft their value, M1: $360 + \alpha$ ft their value or 720 - α ft A1: Three and only three correct exact answers in the range achieves the	ie mark	
Special cases	In part (b) Error in solving quadratic (4cosx-1)(cosx+2) Could yield M1A0B1M1M1A1 losing one mark for the error		
	Works in radians: Complete work in radians :Obtains 1.3 B0 . Then allow M1 M1 for $2\pi - \alpha$ $4\pi - \alpha$ Then gets 5.0, 7.6, 11.3 A0 so 2/4 Mixed answer 1.3, 360 – 1.3, 360 + 1.3, 720 – 1.3 still gets B0M1M1A0	α , $2\pi + \alpha$	or

Question Number	Scheme	Mar	ks
9 (a)	Initial step: Two of: $a = k + 4$, $ar = k$, $ar^2 = 2k - 15$ Or one of: $r = \frac{k}{k+4}$, $r = \frac{2k - 15}{k}$, $r^2 = \frac{2k - 15}{k+4}$, Or $k = \sqrt{(k+4)(2k-15)}$ or even $k^3 = (k+4)k(2k-15)$ $k^2 = (k+4)(2k-15)$, so $k^2 = 2k^2 + 8k - 15k - 60$ Proceed to $k^2 - 7k - 60 = 0$ (*)	M1 M1, A1 A1	(4)
(b)	(k-12)(k+5) = 0 $k = 12$ (*)	M1 A1	(2)
(c)	Common ratio: $\frac{k}{k+4}$ or $\frac{2k-15}{k} = \frac{12}{16} \left(= \frac{3}{4} \text{ or } 0.75 \right)$	M1 A1	(2)
(d)	$\frac{a}{1-r} = \frac{16}{\binom{1}{4}} = 64$	M1 A1	(2) [10]
(a) (b) (c) (d)	M1: The 'initial step', scoring the first M mark, may be implied by next lin M1: Eliminates <i>a</i> and <i>r</i> to give valid equation in <i>k</i> only. Can be awarded for involving fractions. A1 : need some correct expansion and working and answer equivalent to re quadratic but with uncollected terms. Equations involving fractions do not g (No fractions, no brackets – could be a cubic equation) A1: as answer is printed this mark is for cso (Needs = 0) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k = 12$. Ignore the extra -5 or even $k = 5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b) M1: Complete method to find <i>r</i> Could have answer in terms of <i>k</i> A1: 0.75 or any correct equivalent Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r > 1$). Could have an answer still in terms A1: This answer is 64 cao.	e of proof equation quired get this ma solution (ark. <i>k</i> =

Question Number	Scheme	Marks
10 (a)	$2\pi rh + 2\pi r^{2} = 800$ $h = \frac{400 - \pi r^{2}}{\pi r}, \qquad V = \pi r^{2} \left(\frac{400 - \pi r^{2}}{\pi r}\right) = 400r - \pi r^{3} \qquad (*)$	B1 M1, M1 A1 (4)
	$\frac{dv}{dr} = 400 - 3\pi r^{2}$ $400 - 3\pi r^{2} = 0 \qquad r^{2} =, \qquad r = \sqrt{\frac{400}{3\pi}} \qquad (= 6.5 \ (2 \ \text{s.f.}) \)$ $V = 400r - \pi r^{3} = 1737 = \frac{800}{3} \sqrt{\frac{400}{3\pi}} \ (\text{cm}^{3})$	M1 A1 M1 A1 (6)
(C)	(accept awrt 1737 or exact answer) $\frac{d^2 V}{dr^2} = -6\pi r$, Negative, \therefore maximum (Parts (b) and (c) should be considered together when marking)	M1 A1 (2) [12]
<u>Other</u> <u>methods</u> <u>for part</u> <u>(c):</u>	<u>Either:</u> M: Find <u>value</u> of $\frac{dV}{dr}$ on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and consider sign. A: Indicate sign change of positive to negative for $\frac{dV}{dr}$, and conclude max. <u>Or:</u> M: Find <u>value</u> of V on each side of " $r = \sqrt{\frac{400}{3\pi}}$ " and compare with "1737" A: Indicate that both values are less than 1737 or 1737.25, and conclude max	
Notes (a)	B1: For any correct form of this equation (may be unsimplified, may be i M1) M1 : Making <i>h</i> the subject of their three or four term formula M1: Substituting expression for <i>h</i> into $\pi r^2 h$ (independent mark) Must n expression in <i>r</i> only. A1: cso	mplied by 1 st ow be
(D)	M1: At least one power of r decreased by 1 A1: cao M1: Setting $\frac{dV}{dr} = 0$ and finding a value for correct power of r for candida A1 : This mark may be credited if the value of V is correct. Otherwise ans round to 6.5 (allow ±6.5) or be exact answer M1: Substitute a positive value of r to give V A1: 1737 or 1737.25 of answer	te wers should or exact

(c)	M1: needs complete method e.g.attempts differentiation (power reduced) of their first derivative and
	considers its sign
	A1(first method) should be $-6\pi r$ (do not need to substitute r and can condone wrong
	<i>r</i> if found in (b))
	Need to conclude maximum or indicate by a tick that it is maximum. Throughout allow confused notation such as dy/dx for dV/dr
Alternative for (a)	$A = 2\pi r^2 + 2\pi rh$, $\frac{A}{2} \times r = \pi r^3 + \pi r^2 h$ is M1 Equate to 400 <i>r</i> B1
	Then $V = 400r - \pi r^3$ is M1 A1

Г

Т

Question Number	Scheme	Marks
1 (a)	$\frac{\mathrm{d}}{\mathrm{d}x}(\sqrt{(5x-1)}) = \frac{\mathrm{d}}{\mathrm{d}x}\left((5x-1)^{\frac{1}{2}}\right)$	
	$=5 \times \frac{1}{2} (5x-1)^{-\frac{1}{2}}$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\sqrt{(5x-1)} + \frac{5}{2}x^2(5x-1)^{-\frac{1}{2}}$	M1 A1ft
	At $x = 2$, $\frac{dy}{dx} = 4\sqrt{9} + \frac{10}{\sqrt{9}} = 12 + \frac{10}{3}$	M1
	$=\frac{46}{3}$ Accept awrt 15.3	A1 (6)
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\sin 2x}{x^2}\right) = \frac{2x^2\cos 2x - 2x\sin 2x}{x^4}$	M1 $\frac{A1+A1}{A1}$ (4) [10]
	Alternative to (b) $\frac{d}{dx}(\sin 2x \times x^{-2}) = 2\cos 2x \times x^{-2} + \sin 2x \times (-2)x^{-3}$ $= 2x^{-2}\cos 2x - 2x^{-3}\sin 2x \left(=\frac{2\cos 2x}{x^2} - \frac{2\sin 2x}{x^3}\right)$	M1 A1 + A1 A1 (4)

January 2009 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
2 (a)	$\frac{2x+2}{x^2-2x-3} - \frac{x+1}{x-3} = \frac{2x+2}{(x-3)(x+1)} - \frac{x+1}{x-3}$ $= \frac{2x+2-(x+1)(x+1)}{(x-3)(x+1)}$ $= \frac{(x+1)(1-x)}{(x-3)(x+1)}$ $= \frac{1-x}{x-2}$ Accept $-\frac{x-1}{x-2}, \frac{x-1}{2-x}$	M1 A1 M1 A1 (4)
(b)	$\frac{d}{dx}\left(\frac{1-x}{x-3}\right) = \frac{(x-3)(-1)-(1-x)1}{(x-3)^2} = \frac{-x+3-1+x}{(x-3)^2} = \frac{2}{(x-3)^2} + \cos(x-3) + \cos(x-$	M1 A1 A1 (3) [7]
	Alternative to (a) $\frac{2x+2}{x^2-2x-3} = \frac{2(x+1)}{(x-3)(x+1)} = \frac{2}{x-3}$ $\frac{2}{x-3} - \frac{x+1}{x-3} = \frac{2-(x+1)}{x-3}$ $= \frac{1-x}{x-3}$ Alternatives to (b) $(1) f(x) = \frac{1-x}{x-3} = -1 - \frac{2}{x-3} = -1 - 2(x-3)^{-1}$ $f'(x) = (-1)(-2)(x-3)^{-2}$ $= \frac{2}{(x-3)^2} * cso$ $(2) f(x) = (1-x)(x-3)^{-1}$ $f'(x) = (-1)(x-3)^{-1} + (1-x)(-1)(x-3)^{-2}$ $= -\frac{1}{x-3} - \frac{1-x}{(x-3)^2} = \frac{-(x-3) - (1-x)}{(x-3)^2}$ $= \frac{2}{(x-2)^2} *$	M1 A1 M1 A1 (4) M1 A1 A1 (3) M1 A1 A1 (3)

Question Number	Scheme	Marks
3 (a)	$\begin{array}{c} y \\ (3,6) \\ (3,6) \\ (3,6) \\ (7,0) \\ (7,0) \\ x \end{array}$	B1 B1 B1 (3)
(b)	y (3,5) (3,5) (3,5) (7,2) (7,2) (7,2)	B1 B1 B1 (3) [6]

Question Number	Scheme	Marks
4	$x = \cos(2y + \pi)$ $\frac{dx}{dy} = -2\sin(2y + \pi)$ $\frac{dy}{dx} = -\frac{1}{2\sin(2y + \pi)}$ Follow through their $\frac{dx}{dy}$ before or after substitution At $y = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{1}{2\sin\frac{3\pi}{2}} = \frac{1}{2}$ $y - \frac{\pi}{4} = \frac{1}{2}x$ $y = \frac{1}{2}x + \frac{\pi}{4}$	M1 A1 A1ft B1 M1 A1 (6) [6]

Question Number		Scheme	Marl	ks
5	(a)	$g(x) \ge 1$	B1	(1)
	(b)	$fg(x) = f(e^{x^2}) = 3e^{x^2} + lne^{x^2}$	M1	
		$= x^{2} + 3e^{x^{2}} \bigstar$ $\left(\operatorname{fg} : x \mapsto x^{2} + 3e^{x^{2}} \right)$	A1	(2)
	(c)	$\operatorname{fg}(x) \ge 3$	B1	(1)
	(d)	$\frac{d}{dx}\left(x^2 + 3e^{x^2}\right) = 2x + 6xe^{x^2}$	M1 A1	
		$2x + 6x e^{x^{2}} = x^{2} e^{x^{2}} + 2x$ $e^{x^{2}} (6x - x^{2}) = 0$ $e^{x^{2}} \neq 0, \qquad 6x - x^{2} = 0$ $x = 0, 6$	M1 A1 A1 A1	(6) [10]

Question Number	Scheme	Marks	
6 (a)(i)	$\sin 3\theta = \sin (2\theta + \theta)$ = $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ = $2\sin \theta \cos \theta \cdot \cos \theta + (1 - 2\sin^2 \theta)\sin \theta$ = $2\sin \theta (1 - \sin^2 \theta) + \sin \theta - 2\sin^3 \theta$ = $3\sin \theta - 4\sin^3 \theta$ * cso	M1 A1 M1 A1 (4	4)
(ii)	$8\sin^{3}\theta - 6\sin\theta + 1 = 0$ $-2\sin 3\theta + 1 = 0$ $\sin 3\theta = \frac{1}{2}$ $3\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ $\theta = \frac{\pi}{18}, \frac{5\pi}{18}$	M1 A1 M1 A1 A1 (5))
(b)	$\sin 15^{\circ} = \sin (60^{\circ} - 45^{\circ}) = \sin 60^{\circ} \cos 45^{\circ} - \cos 60^{\circ} \sin 45^{\circ}$ $= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$ $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2} = \frac{1}{4} (\sqrt{6} - \sqrt{2}) \bigstar \qquad \qquad$	M1 M1 A1 A1 (4 [1	4) 3]
	Alternatives to (b) (D) $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$ $= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$ $= \frac{1}{4}\sqrt{6} - \frac{1}{4}\sqrt{2} = \frac{1}{4}(\sqrt{6} - \sqrt{2})$ * cso	M1 M1 A1 A1 (4	4)
	$ (2) Using \cos 2\theta = 1 - 2\sin^2 \theta, \ \cos 30^\circ = 1 - 2\sin^2 15^\circ 2\sin^2 15^\circ = 1 - \cos 30^\circ = 1 - \frac{\sqrt{3}}{2} \sin^2 15^\circ = \frac{2 - \sqrt{3}}{4} \left(\frac{1}{4}(\sqrt{6} - \sqrt{2})\right)^2 = \frac{1}{16}(6 + 2 - 2\sqrt{12}) = \frac{2 - \sqrt{3}}{4} Hence \ \sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}) * $ cso	M1 A1 M1 A1 (4	})

Question Number		Scheme		ks
7	(a)	$f'(x) = 3e^{x} + 3xe^{x}$ $3e^{x} + 3xe^{x} = 3e^{x}(1+x) = 0$ x = -1 $f(-1) = -3e^{-1} - 1$	M1 A1 M1 A1 B1	(5)
	(b)	$x_1 = 0.2596$ $x_2 = 0.2571$ $x_3 = 0.2578$	B1 B1 B1	(3)
	(c)	Choosing $(0.25755, 0.25765)$ or an appropriate tighter interval. f(0.25755) = -0.000379 f(0.25765) = 0.000109 Change of sign (and continuity) \Rightarrow root $\in (0.25755, 0.25765)$ * cso $(\Rightarrow x = 0.2576, \text{ is correct to 4 decimal places})$	M1 A1 A1	(3)
		<i>Note:</i> $x = 0.257\ 627\ 65\ \dots$ is accurate		[,,]

Question Number		Scheme		Marks	
8	(a)	$R^{2} = 3^{2} + 4^{2}$ $R = 5$ $\tan \alpha = \frac{4}{3}$ $\alpha = 53 \dots^{\circ}$ $A = 53 \dots^{\circ}$ $R = 53 \dots^{\circ}$	M1 A1 M1 ° A1	(4) ft	
	(0)	At the maximum, $\cos(\theta - \alpha) = 1$ or $\theta - \alpha = 0$ $\theta = \alpha = 53 \dots^{\circ}$ ft their α	M1 x A1	ft (3)	
	(C)	Minimum occurs when $\cos(15t - \alpha)^\circ = -1$ The minimum temperature is $(10-5)^\circ = 5^\circ$	M1 A1 1	ft (2)	
	(d)	$15t - \alpha = 180$ t = 15.5 awrt 15.5	M1 M1	A1 (3) [12]	
Question Number	Scheme	Ma	arks		
--------------------	--	----	-----------		
1 (a)	C: $y^2 - 3y = x^3 + 8$ $\begin{cases} \frac{dy}{dx} \\ \frac$	M1			
	$(2y-3)\frac{dy}{dx} = 3x^{2}$ A correct (condoning sign error) attempt to combine or factorise their ' $2y\frac{dy}{dx} - 3\frac{dy}{dx}$ '. Can be implied.	M1			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2y-3} \qquad \qquad \frac{3x^2}{2y-3}$	A1	oe (4)		
(b)	$y=3 \Rightarrow 9-3(3) = x^3+8$ Substitutes $y=3$ into C.	M1			
	$x^3 = -8 \implies \underline{x = -2}$ Only $\underline{x = -2}$	A1			
	$(-2,3) \Rightarrow \frac{dy}{dx} = \frac{3(4)}{6-3} \Rightarrow \frac{dy}{dx} = 4$ Also can be ft using their 'x' value and $y = 3$ in the correct part (a) of $\frac{dy}{dx} = \frac{3x^2}{2y-3}$	A1	√ (3)		
	1(b) final A1 $$. Note if the candidate inserts their x value and $y = 3$ into $\frac{dy}{dx} = \frac{3x^2}{2y-3}$,		(3)		
	then an answer of $\frac{dy}{dx}$ = their x^2 , may indicate a correct follow through.				
			[7]		

January 2009 6666 Core Mathematics C4 Mark Scheme

Question
NumberSchemeMarks2(a)Area
$$(R) = \frac{1}{2} \frac{3}{\sqrt{(1+4x)}} dx = \frac{1}{8} \frac{3}{8} (1+4x)^{\frac{1}{2}} dx$$
Integrating $3(1+4x)^{-\frac{1}{4}}$ to give
 $\pm k(1+4x)^{\frac{1}{4}}$ to give
 $\pm k(1+4x)^{\frac{1}{4}}$ M1 $-\left[\frac{3(1+4x)^{\frac{1}{2}}}{\frac{1}{4}4}\right]_{u}^{2}$ Correct integration
Ignore limits.M1 $=\left[\frac{1}{2}(1+4x)^{\frac{1}{2}}\right]_{u}^{2}$ Substitutes limits of 2 and 0 into a
changed function and subtracts the
correct way round.M1 $=\frac{1}{2}\sqrt{9} - (\frac{1}{2}(1))$ Substitutes limits of 2 and 0 into a
changed function and subtracts the
correct way round.M1 $=\frac{3}{2} - \frac{1}{2} = \frac{3}{2} (units)^{2}$ 3A1(Answer of 3 with no working scores
MOAOM0A0.0.Use of $V = \pi \int y^{2} dx$.B1(b)Volume $= \pi \int_{0}^{2} \left(\frac{3}{\sqrt{(1+4x)}}\right)^{2} dx$ Can be implied. Ignore limits and dx.B1 $=(\pi) \left[\frac{2}{3} \ln |1+4x|\right]_{0}^{2}$ $\pm k \ln |1+4x|$
 $\frac{3}{2} \ln |1+4x|$ M1
A1 $=(\pi) \left[\frac{2}{3} \ln |9-(\frac{2}{3} \ln 1)\right]$ Substitutes limits of 2 and 0
and subtracts the correct way round.M1
A1Note that ln 1 can be implied as equal to 0. $\frac{3}{2} \pi \ln 9$ or $\frac{9}{4} \pi \ln 3$
awarded the final A0.A1 oe isw
(5)

Question Number	Scheme		Marks
3 (a)	$27x^{2} + 32x + 16 \equiv A(3x+2)(1-x) + B(1-x) + C(3x+2)^{2}$	Forming this identity	M1
	$x = -\frac{2}{3}, 12 - \frac{64}{3} + 16 = \left(\frac{5}{3}\right)B \implies \frac{20}{3} = \left(\frac{5}{3}\right)B \implies B = 4$ $x = 1, \qquad 27 + 32 + 16 = 25C \implies 75 = 25C \implies C = 3$	Substitutes either $x = -\frac{2}{3}$ or x = 1 into their identity or equates 3 terms or substitutes in values to write down three simultaneous equations. Both $B = 4$ and $C = 3$ (Note the A1 is dependent on both method marks in this part.)	M1 A1
	Equate x^2 : $27 = -3A + 9C \implies 27 = -3A + 27 \implies 0 = -3A$ $\implies A = 0$ $x = 0, 16 = 2A + B + 4C$ $\implies 16 = 2A + 4 + 12 \implies 0 = 2A \implies A = 0$	Compares coefficients or substitutes in a third <i>x</i> -value or uses simultaneous equations to show $A = 0$.	B1 (4)
(b)	$f(x) = \frac{4}{(3x+2)^2} + \frac{3}{(1-x)}$ = $4(3x+2)^{-2} + 3(1-x)^{-1}$ = $4\left[2(1+\frac{3}{2}x)^{-2}\right] + 3(1-x)^{-1}$ = $1(1+\frac{3}{2}x)^{-2} + 3(1-x)^{-1}$	Moving powers to top on any one of the two expressions	M1
	$= 1\left\{ \underbrace{1 + (-2)(\frac{3x}{2}); + \frac{(-2)(-3)}{2!}(\frac{3x}{2})^2 + \dots}_{2!} \right\}$ $+ 3\left\{ \underbrace{1 + (-1)(-x); + \frac{(-1)(-2)}{2!}(-x)^2 + \dots}_{2!} \right\}$ $= \left\{ 1 - 3x + \frac{27}{2!}x^2 + \dots \right\} + 3\left\{ 1 + x + x^2 + \dots \right\}$	Either $1 \pm (-2)(\frac{3x}{2})$ or $1 \pm (-1)(-x)$ from either first or second expansions respectively Ignoring 1 and 3, any one correct {} expansion. Both {} correct.	dM1; A1 A1
	$= 4 + 0x; + \frac{39}{4}x^2$	$4 + (0x); \frac{39}{4}x^2$	A1; A1 (6)

Question Number	Scheme		Marks
(c)	Actual = f(0.2) = $\frac{1.08 + 6.4 + 16}{(6.76)(0.8)}$ = $\frac{23.48}{5.408}$ = 4.341715976 = $\frac{2935}{676}$ Or Actual = f(0.2) = $\frac{4}{(3(0.2) + 2)^2} + \frac{3}{(1 - 0.2)}$ = $\frac{4}{6.76} + 3.75$ = 4.341715976 = $\frac{2935}{676}$	Attempt to find the actual value of f(0.2) or seeing awrt 4.3 and believing it is candidate's actual f(0.2). Candidates can also attempt to find the actual value by using $\frac{A}{(3x+2)} + \frac{B}{(3x+2)^2} + \frac{C}{(1-x)}$ with their <i>A</i> , <i>B</i> and <i>C</i> .	M1
	Estimate = $f(0.2) = 4 + \frac{39}{4}(0.2)^2$ = 4 + 0.39 = 4.39	Attempt to find an estimate for $f(0.2)$ using their answer to (b)	M1 √
	% age error = $\frac{ 4.39 - 4.341715976 }{4.341715976} \times 100$	$\left \frac{\text{their estimate - actual}}{\text{actual}} \right \times 100$	M1
	=1.112095408 = 1.1%(2sf)	1.1%	A1 cao (4)
			[14]

Question Number	Scheme	Marks
4 (a)	$d_1 = -2i + j - 4k$, $d_2 = qi + 2j + 2k$	
	As $\left\{ \mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} q \\ 2 \\ 2 \end{pmatrix} \right\} = \underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)}$ Apply dot product calculation between two direction vectors, ie. $\underline{(-2 \times q) + (1 \times 2) + (-4 \times 2)}$	M1
	$\mathbf{d}_1 \bullet \mathbf{d}_2 = 0 \implies -2q + 2 - 8 = 0$ Sets $\mathbf{d}_1 \bullet \mathbf{d}_2 = 0$ and solves to find $\underline{q} = -3$	A1 cso (2)
(b)	Lines meet where:	
	$ \begin{pmatrix} 11\\2\\17 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\-4 \end{pmatrix} = \begin{pmatrix} -5\\11\\p \end{pmatrix} + \mu \begin{pmatrix} q\\2\\2 \end{pmatrix} $	
	i: $11 - 2\lambda = -5 + q\mu$ (1)Need to see equationsFirst two ofj: $2 + \lambda = 11 + 2\mu$ (2)(1) and (2).k: $17 - 4\lambda = p + 2\mu$ (3)Condone one slip.(Note that $q = -3$.)	M1
	(1) + 2(2) gives: $15 = 17 + \mu \implies \mu = -2$ Attempts to solve (1) and (2) to find one of either λ or μ	dM1
	(2) gives: $2 + \lambda = 11 - 4 \implies \lambda = 5$ Any one of $\underline{\lambda = 5}$ or $\underline{\mu = -2}$ Both $\underline{\lambda = 5}$ and $\underline{\mu = -2}$	A1 A1
	(3) \Rightarrow 17 - 4(5) = $p + 2(-2)$ Attempt to substitute their λ and μ into their k component to give an equation in p alone.	ddM1
	$\Rightarrow p = 17 - 20 + 4 \Rightarrow \underline{p = 1} \qquad \underline{p = 1}$	A1 cso
(c)	$\mathbf{r} = \begin{pmatrix} 11\\2\\17 \end{pmatrix} + 5 \begin{pmatrix} -2\\1\\-4 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} -5\\11\\1 \end{pmatrix} - 2 \begin{pmatrix} -3\\2\\2 \end{pmatrix}$ Substitutes their value of λ or μ into the correct line l_1 or l_2 .	M1
	Intersect at $\mathbf{r} = \begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ or $\underline{(1, 7, -3)}$ $\begin{pmatrix} 1 \\ 7 \\ -3 \end{pmatrix}$ or $\underline{(1, 7, -3)}$	A1
		(2)

Question Number	Scheme	Marks
(d)	Let $\overrightarrow{OX} = \mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} 1\\7\\-3 \end{pmatrix} - \begin{pmatrix} 9\\3\\13 \end{pmatrix} = \begin{pmatrix} -8\\4\\-16 \end{pmatrix}$ Finding vector \overrightarrow{AX} by finding the difference between \overrightarrow{OX} and \overrightarrow{OA} . Can be ft using candidate's \overrightarrow{OX} .	M1 √ ±
	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$ $\overrightarrow{OB} = \begin{pmatrix} 9\\3\\13 \end{pmatrix} + 2 \begin{pmatrix} -8\\4\\-16 \end{pmatrix} \qquad $	dM1 √
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -7\\11\\-19 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-7i + 11j - 19k}$ $(-7)\\11\\-19 \end{pmatrix}$ or $\underline{-7i + 11j - 19k}$ or $(-7, 11, -19)$	A1
		(3)
		[13]

Question Number	Scheme		Marks
5 (a)	Similar triangles $\Rightarrow \frac{r}{h} = \frac{16}{24} \Rightarrow r = \frac{2h}{3}$	Uses similar triangles, ratios or trigonometry to find either one of these two expressions oe.	M1
	$V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi \left(\frac{2h}{3}\right)^{2}h = \frac{4\pi h^{3}}{27} \mathbf{AG}$	Substitutes $r = \frac{2h}{3}$ into the formula for the volume of water <i>V</i> .	A1 (2)
(b)	From the question, $\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	$\frac{\mathrm{d}V}{\mathrm{d}t} = 8$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} = \frac{4\pih^2}{9}$	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{12\pih^2}{27} \text{ or } \frac{4\pih^2}{9}$	B1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} = 8 \times \frac{9}{4\pi h^2} = \frac{18}{\frac{\pi h^2}{2}}$	Candidate's $\frac{dV}{dt} \div \frac{dV}{dh}$; $\frac{8 \div \left(\frac{12\pi h^2}{27}\right)}{27}$ or $\frac{8 \times \frac{9}{4\pi h^2}}{4\pi h^2}$ or $\frac{18}{\pi h^2}$ oe	M1; A1
	When $h = 12$, $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{18}{\underline{144\pi}} = \frac{1}{\underline{8\pi}}$	$\frac{18}{144\pi} \text{ or } \frac{1}{8\pi}$	A1 oe isw
	Note the answer must be a one term exact value. Note, also you can ignore subsequent working after $\frac{18}{18}$		(5)
	$\frac{144 \pi}{2}$		[7]

Question Number	Scheme	Marks
6 (a)	$\int \tan^2 x \mathrm{d}x$	
	$\left[NB: \underline{\sec^2 A = 1 + \tan^2 A} \text{ gives } \underline{\tan^2 A = \sec^2 A - 1} \right]$ The correct <u>underlined identity</u> .	M1 oe
	$= \int \sec^2 x - 1 \mathrm{d}x$	
	$= \underline{\tan x - x} (+ c)$ Correct integration with/without + c	A1 (2)
(b)	$\int \frac{1}{x^3} \ln x \mathrm{d}x$	
	$\begin{cases} u = \ln x \implies \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} \implies v = \frac{x^{-2}}{-2} = \frac{-1}{2x^2} \end{cases}$	
	$= -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction. Correct direction means that $u = \ln x$.	M1
	Correct expression.	A1
	$= -\frac{1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx$ An attempt to multiply through $\frac{k}{x}, n \in \Box, n \dots 2 \text{ by } \frac{1}{x} \text{ and an}$	
	$= -\frac{1}{z^{2}} \ln x + \frac{1}{z} \left(-\frac{1}{z^{2}} \right) (+c)$ attempt to	
	$\frac{2x^2}{2(2x^2)} = \frac{2(2x^2)}{2(2x^2)}$ "integrate" (process the result);	M1
	<u>correct solution</u> with/without + c	A1 oe (4)

Question Number	Scheme		Marks
(c)	$\int \frac{\mathrm{e}^{3x}}{1+\mathrm{e}^x} \mathrm{d}x$		
	$\left\{ u = 1 + e^x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = e^x, \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{e^x}, \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{1}{u-1} \right\}$	Differentiating to find any one of the <u>three underlined</u>	<u>B1</u>
	$= \int \frac{e^{2x} \cdot e^{x}}{1 + e^{x}} dx = \int \frac{(u - 1)^{2} \cdot e^{x}}{u} \cdot \frac{1}{e^{x}} du$	Attempt to substitute for $e^{2x} = f(u)$, their $\frac{dx}{du} = \frac{1}{e^x}$ and $u = 1 + e^x$	M1*
	or $= \int \frac{(u-1)^3}{u} \cdot \frac{1}{(u-1)} du$	or $e^{3x} = f(u)$, their $\frac{dx}{du} = \frac{1}{u-1}$ and $u = 1 + e^x$.	
	$=\int \frac{(u-1)^2}{u}\mathrm{d}u$	$\int \frac{(u-1)^2}{u} \mathrm{d}u$	A1
	$=\int \frac{u^2 - 2u + 1}{u} \mathrm{d}u$	An attempt to multiply out their numerator to give at least three terms	
	$=\int u - 2 + \frac{1}{u} \mathrm{d}u$	and divide through each term by u	dM1*
	$=\frac{u^{2}}{2}-2u+\ln u \ (+c)$	Correct integration with/without +c	A1
	$=\frac{(1+e^{x})^{2}}{2}-2(1+e^{x})+\ln(1+e^{x})+c$	Substitutes $u = 1 + e^x$ back into their integrated expression with at least two terms.	dM1*
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2} + e^{x} + \frac{1}{2}e^{2x} - 2 - 2e^{x} + \ln(1 + e^{x}) + c$		
	$= \frac{1}{2}e^{2x} - e^{x} + \ln(1 + e^{x}) - \frac{3}{2} + c$		
	$=\frac{1}{2}e^{2x}-e^{x}+\ln(1+e^{x})+k$ AG	$\frac{\frac{1}{2}e^{2x} - e^x + \ln(1 + e^x) + k}{1 + c \text{ and } "-\frac{3}{2}" \text{ combined.}}$	A1 cso (7)
			[13]

Que: Num	stion Iber	Scheme		Ma	irks
7	(a)	At A, $x = -1 + 8 = 7$ & $y = (-1)^2 = 1 \implies A(7,1)$	<i>A</i> (7,1)	B1	(1)
	(b)	$x=t^3-8t, y=t^2,$			(-)
		$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2 - 8, \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$			
		$\therefore \frac{dy}{dt} = \frac{2t}{t}$	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1	
		$dx 3t^2 - 8$	Correct $\frac{dy}{dx}$	A1	
		At <i>A</i> , m(T) = $\frac{2(-1)}{\underline{3(-1)^2 - 8}} = \frac{-2}{\underline{3-8}} = \frac{-2}{\underline{-5}} = \frac{2}{\underline{5}}$	Substitutes for <i>t</i> to give any of the four underlined oe:		
		T : $y - (\text{their 1}) = m_T (x - (\text{their 7}))$	Finding an equation of a tangent with their point and their tangent gradient		
		or $1 = \frac{2}{5}(7) + c \implies c = 1 - \frac{14}{5} = -\frac{9}{5}$	or finds c and uses v = (their gradient)x + "c".	dM1	
		Hence T : $y = \frac{2}{5}x - \frac{9}{5}$	y (later gamman), i to t		
		gives T: $2x - 5y - 9 = 0$ AG	$\frac{2x-5y-9=0}{2x-5y-9=0}$	A1	cso (5)
	(c)	$2(t^3 - 8t) - 5t^2 - 9 = 0$	Substitution of both $x = t^3 - 8t$ and $y = t^2$ into T	M1	
		$2t^3 - 5t^2 - 16t - 9 = 0$			
		$(t+1)\left\{(2t^2-7t-9)=0\right\}$	A realisation that		
		$(t+1)\{(t+1)(2t-9)=0\}$	(t+1) is a factor.	ami	
		${t = -1 \text{ (at } A)} t = \frac{9}{2} \text{ at } B$	$t=\frac{9}{2}$	A1	
		$x = \left(\frac{9}{2}\right)^2 - 8\left(\frac{9}{2}\right) = \frac{729}{8} - 36 = \frac{441}{8} = 55.125$ or awrt 55.1	Candidate uses their value of <i>t</i> to find either the <i>x</i> or <i>y</i> coordinate	ddM	1
		$y = \left(\frac{9}{2}\right)^2 = \frac{81}{4} = 20.25$ or awrt 20.3	One of either x or y correct. Both x and y correct	A1 A1	
		Hence $B(\frac{441}{8}, \frac{81}{4})$	awrt		(6)
					[12]

January 2009 6674 Further Pure Mathematics FP1 (legacy) Mark Scheme

Question Number	Scheme	Ma	rks
1 (a)	$\sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r - \sum_{r=1}^{n} 1 = \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1) - n$ Simplifying this expression $= \frac{1}{2} n(n^{2} - 4) (\clubsuit)$	M1, A M1 A1	41 (4)
(b)	$\sum_{r=1}^{20} (r^2 - r - 1) - \sum_{r=1}^{9} (r^2 - r - 1) = \frac{1}{3} \times 20 \times (20^2 - 4) - \frac{1}{3} \times 9 \times (9^2 - 4)$	M1	
Alt (b)	$= 2409$ $\sum_{r=1}^{20} (r^{2} - r - 1) - \sum_{r=1}^{9} (r^{2} - r - 1) =$ $\left(\frac{1}{6} \times 20 \times 21 \times 41 - \frac{1}{2} \times 20 \times 21 - 20\right) - \left(\frac{1}{6} \times 9 \times 10 \times 19 - \frac{1}{2} \times 9 \times 10 - 9\right) M1$ $= 2409 \qquad \qquad$	A1	(2)
Notes	 (a) 1st M: Separating, substituting set results, at least two correct. 2nd M: Either "eliminate" brackets totally or factor x [] where any product of brackets inside [] has been reduced to a single bracket 2nd A: ANSWER GIVEN. No wrong working seen; must have been an intermediate step, e.g. 1/6 n(2n² + 3n + 1 - 3n - 3 - 6). (b) M: Must be 2²⁰/_{r=1} () - 2⁹/_{r=1} () applied. If list terms and add, allow M1 if 11 terms with at most two wrong: [89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379] 		

Question Number	Scheme	Marks
2	3 – i is a root (seen anywhere)	B1
	Attempt to multiply out $[x - (3 + i)][x - (3 - i)]$ {= $x^2 - 6x + 10$ } f(x) = $(x^2 - 6x + 10)(2x^2 - 2x + 1)$	M1 M1, A1
	$x = \frac{2 \pm \sqrt{4-8}}{4}, \qquad x = \frac{1 \pm i}{2}$	*M1, A1 [6]
Notes	1 st M: Using the two roots to form a quadratic factor. 2 nd M: Complete method to find second quadratic factor $2x^2 + ax (+ b)$.	
	3^{rd} *M: Correct method, as far as $x =$, for solving candidate's second quadratic, DEPENDENT on both previous M marks	
Alt	(i)f(x)/{x - (3 + i)} = $2x^3 + (-8 + 2i)x^2 + (7 - 2i)x - 3 + i$ {=g(x)} g(x)/{x - (3 - i)} = $(2x^2 - 2x + 1)$ Attempt at complete process M2; A1	Lines 2 and 3
	(ii)(2) $(x - a + ib)(x - a - ib)((x^2 - 6x + 10)) = f(x)$ and compare ≥ 1 coeff. M1 Either $-2a - 6 = -7$, or two of $10(b^2 + a^2) = 5$ or $-6(a^2 + b^2) - 20a = -13$, $20 + 2(b^2 + a^2) + 24a = 33$ A1; Complete method for a and b, M1; AnswerA1	Lines 3 and 4

Question Number	Scheme	Marks
3	Identifying 3 as critical value e.g. used in soln Identifying 0 as critical value e.g. used in soln	B1 B1
	$\frac{x^3 + 5x - 12 - 4(x - 3)}{x - 3} > 0 \text{or} (x^3 + 5x - 12)(x - 3) > 4(x - 3)^2 \text{o.e.}$	M1
	$\frac{x(x^2+1)}{x-3} > 0 \qquad \text{or} (x-3)(x^3+x) > 0$	A1
Notos	Using their critical values to obtain inequalities. x < 0 or $x > 3$	M1 A1 cso
NOLES	1 st M must be a valid opening strategy.	
	Sketching $y = \frac{x}{x-3}$ or $y = \frac{x(x^2+1)}{x-3}$ should mark as scheme.	
	The result $0 > x > 3$ (poor notation) can gain final M but not A.	
Alt		
	Identifying 3 as critical value e.g. $x = 3$ seen as asymp.	B1
	Identifying 0 as critical value e.g. pt of intersection on y-axis of $y = \frac{x^3 + 5x - 12}{x - 3}$ and $y = 4$	B1
	M1 $y = \frac{x^3 + 5x - 12}{x - 3}$ sketched for $x < 3$ or $y = \frac{x^3 + 5x - 12}{x - 3}$ sketched for $x > 3$ A1 All correct including $y = 4$ drawn	M1, A1
	Using the graph values to obtain one or more inequalities $x < 0$ or $x > 3$	M1 A1

Question Number		Scheme	Ma	rks
4	(a)	At st. pt $f'(x) = 0$, $\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ is undefined or at st. pt. tan. // to x-axis, or tan. does not cross x-axis, o.e.	B1	(1)
	(b)	$f'(x) = -1 - 2x\cos(x^2)$ (may be seen in body of work)	M1, /	41
		f(0.6) = 0.0477, f'(0.6) = -2.123 (may be implied by correct answer)	A1	
		Attempt to use $(x_1) = 0.6 - \frac{f(0.6)}{f'(0.6)}$ $[0.6 - \frac{0.0477}{-2.123}]$ = 0.622 (3 dp) (0.6224795)	M1 A1	(5)
	(c)	$f(0.6215) = 1.77 \times 10^{-3} > 0, f(0.6225) = -3.807 \times \times 10^{-4} < 0$	M1	
		Change of sign in $f(x)$ in (0.6215, 0.6225) "so 0.622 correct"	A1	(2)
Notes		(b) 2ndM: If the N-R statement applied to 0.6 not seen, can be implied if answer correct; otherwise M0		[8]
		If no values for $f(0.6)$, $f'(0.6)$ seen, they can be implied if final answer correct.		
		 (c) M: For candidates x₁, calculate f(x₁ - 0.0005) and f(x₁ + 0.0005) (or a tighter interval) A: Requires correct values of f(0.6215) and f(0.6225) (or their acceptable values) [may be rounded, e.g. 2×10⁻³, or truncated, e.g - 3.80×10⁻⁴], sign change stated or >0, <0 seen, and conclusion. 		

Quest Numb	tion Der	Scheme	M	arks
5	(a)	$z_2 = \frac{12 - 5i}{3 + 2i} \times \frac{3 - 2i}{3 - 2i} = \frac{36 - 24i - 15i - 10}{13}$	M1	
	(b)	= 2 - 3i	A1	(2)
		P(3, 2)	B1.	B1ft
		0 Re z	2.,	(2)
		Q(2, -3) $P: B1, Q: B1ft from (a)$		
	(c)	grad. $OP \times$ grad. $OQ = (\frac{2}{3} \times -\frac{3}{2})$	M1	
		$=-1 \qquad \Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit)$	A1	(2)
Alt	(C)	(i) $\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$		
		$Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}}$ M1		
		$\Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit) \qquad A1$		
	(d)	$z = \frac{3+2}{2} + \frac{2+(-3)}{2}i$	M1	
		$=\frac{5}{2}-\frac{1}{2}i$	A1	(2)
	(e)	$r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}$	M1	
		$=\frac{\sqrt{26}}{2}$ or exact equivalent	A1	(2) [10]
Notes	5	 (a) M: Multiplying num. and den. by 3–2i and attempt to simplify num. and denominator. 		
		If $(c + id)(3 + 2i) = 12 - 5i$ used, need to find 2 equations in c and d and then solve for c and d.		
		(b) Coords seen or clear from labelled axes. S C: If only P and O seen(no coords) or correct coords given but P and O interchanged allow		
		B1B0 (c) If separate arguments are found and then added allow M1 but not A1		
		for decimals used e.g. $1.570796327 = \frac{1}{2}\pi$.		
		Alts: Appropriate transformation matrix applied to one point M1; A1 Scalar product used correctly M1: 0 and conclusion A1		
		Pythagoras' theorem, congruent triangles are other methods seen.		
		 (d) M: Any complete method for finding centre. A: Must be complex number; coordinates not sufficient 		
		(e) M: Correct method for radius, or diameter, for candidate's answer to (d)		

Question Number	Scheme	Ma	arks
6 (a)	$r = \sqrt{x^2 + y^2}, y = r \sin \theta$		
	$\therefore \sqrt{x^2 + y^2} = \frac{6y}{\sqrt{x^2 + y^2}} \text{or } x^2 + y^2 = 6y \text{o.e.}$	M1,	A1 (2)
(b)	$r = 9\sqrt{6}(1 - 2\sin^2\theta) \text{o.e.}$	B1	(1)
(c)	$y = r\sin\theta = 9\sqrt{6}(\sin\theta - 2\sin^3\theta) \Rightarrow \frac{dy}{d\theta} =; 9\sqrt{6}\cos\theta(1 - 6\sin^2\theta)$ o.e.	M1;/	A1
	Or $y = 9\sqrt{6}\sin\theta\cos 2\theta \Rightarrow \frac{dy}{d\theta} = 9\sqrt{6}(\cos 2\theta\cos\theta - 2\sin\theta\sin 2\theta)$ o.e.		
	$\frac{dy}{d\theta} = 0 [\Rightarrow \cos\theta(1 - 6\sin^2\theta) = 0]$ and attempt to solve	M1	
	$(0 \le \theta \le \frac{\pi}{4})$ $\therefore \sin \theta = \frac{1}{\sqrt{6}}$ (*)	A1	(4)
(d)	$r = 9\sqrt{6} \left(1 - 2 \times \frac{1}{6} \right)$	M1	
	$= 6\sqrt{6}$ or 14.7 (awrt)	A1	(2)
(6)	C ₂ : tan. // to initial line is $y = r \sin \theta = 6\sqrt{6} \times \frac{1}{\sqrt{6}} = 6$	B1	
	C ₁ : Circle, centre (0, 3) (cartesian) or $(3, \frac{\pi}{2})$ (polar), passing through (0,0).	M1	(3)
	y = 0 is a common tangent		(J) [12]
Notes	(a) M1: Use of $r = \sqrt{x^2 + y^2}$ or $r^2 = x^2 + y^2$, and $y = r \sin \theta$ (allow $x = r \sin \theta$) to form cartesian equation. (b) May be scored in (c) (c) 1 st M: Finds y and attempts to find $\frac{dy}{d\theta}$ Working with rcos θ instead of $r \sin \theta$, can score the M marks. If $\frac{dy}{dx} = \frac{dy}{d\theta} / \frac{dx}{d\theta}$ used throughout, $\frac{dy}{dx} = 0$ etc. all marks may be gained (d) M: Using $\sin \theta = \frac{1}{\sqrt{6}}$ to find r (e) Alt. for C ₁ : M:Find $y = 6 \sin^2 \theta$, $(\frac{dy}{d\theta} = 12 \sin \theta \cos \theta)$ and solve $\frac{dy}{d\theta} = 0$ A: Find $\theta = \frac{\pi}{2}$ and conclude that $y = 6$, so common tangent		

Question Number	Scheme	Marks
7 (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda x \mathrm{e}^x + \lambda \mathrm{e}^x \qquad \text{Use of the product rule}$	M1
	$\frac{d^2 y}{dx^2} = \lambda x e^x + \lambda e^x + \lambda e^x$	A1
	$\lambda x e^{x} + 2\lambda e^{x} + 4\lambda x e^{x} + 4\lambda e^{x} - 5\lambda x e^{x} = 4e^{x}$	*M1
	$\lambda = \frac{2}{3}$	A1 (4)
	$(\therefore P.I. is \frac{2}{3}xe^x)$	
(b)	Aux. eqn. $m^2 + 4m - 5 = 0$ (m - 1)(m + 5) = 0	
	(m - 1)(m + 3) = 0 m = 1 or m = -5 C.F. is $y = Ae^{x} + Be^{-5x}$	M1 M1 A1
	Gen. soln. is $(y =) \frac{2}{3}xe^x + Ae^x + Be^{-5x}$ [f.t: Candidate's C.F + P.I.]	A1ft (4)
(c)	$-\frac{2}{3} = A + B$	M1
	$\frac{dy}{dx} = \frac{2}{3}xe^{x} + \frac{2}{3}e^{x} + Ae^{x} - 5Be^{-5x}$	M1
	$-\frac{4}{3} = \frac{2}{3} + A - 5B$ A1 two correct unsimplified eqns.	A1
	$-2 = A - 5B$ $\frac{4}{3} = 6B$	
	$B = \frac{2}{9}, A = -\frac{8}{9}$	M1
	$y = \frac{2}{3}xe^{x} - \frac{8}{9}e^{x} + \frac{2}{9}e^{-5x}$	A1 (5)
		[13]
Notes	(a) 2 nd M dependent on first M.	
	 (b) 1st M: Attempt to solve A.E. 2nd M: Only allow C.F. of form Ae^{ax} + Be^{bx}, where a and b are real. If seen in (a), award marks there. PI must be of form λ xe^x (λ ≠ 0) to gain final A1 f.t. 	
	(c) 1 st M: Using $x = 0, y = -\frac{2}{3}$ in their general solution.	
	2 ^m M: Differentiating their general solution {C.F. + P.I. } (must have term in λxe^{x}) (condone slips) and using	
	$x = 0, \frac{dy}{dx} = -\frac{4}{3}$ to find an equation in A and B.	
	3^{rd} M: Solving simultaneous equations to find a value of A and a value of B. Can be awarded if only C.F. found. Insist on $y = \dots$ in this part.	

Quest Numb	ion er	Scheme	Marks
8	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2} \times \frac{\mathrm{d}t}{\mathrm{d}x} \qquad \text{o.e.}$	M1, A1
		$\sin x \times -\frac{1}{t^2} \times \frac{\mathrm{d}t}{\mathrm{d}x} + \frac{1}{t} \cos x = \frac{1}{t^2}$	M1
		$\frac{\mathrm{d}t}{\mathrm{d}x} - t\cot x = -\csc x (\clubsuit)$	A1 cso(4)
	(b)	$I = e^{\int -\cot x dx}$	M1
		$= e^{-\ln \sin x}$	
		$=\frac{1}{\sin x}$ or cosecx	A1
		$\frac{1}{\sin x}\frac{\mathrm{d}t}{\mathrm{d}x} - t\frac{\cos x}{\sin^2 x} = -\mathrm{cosec}^2 x$	M1
		$\frac{t}{\sin x} = \int -\cos ec^2 x dx \text{or} \frac{d}{dx} \left(\frac{t}{\sin x} \right) = -\cos ec^2 x$	A1f.t.
		$\frac{t}{\sin x} = \cot x (+c) \qquad \text{o.e.}$	A1 cso (5)
	(c)	$t = \cos x + c \sin x \implies y = \frac{1}{\cos x + c \sin x}$ (*)	M1, A1 (2)
	(d)	$\frac{\sqrt{2}}{3} = \frac{1}{\frac{1}{\sqrt{2}} + \frac{c}{\sqrt{2}}}$	M1
		$\sqrt{2}\left(\frac{1}{\sqrt{2}} + \frac{c}{\sqrt{2}}\right) = 3$	
		c = 2 π 1	A1
		$x = \frac{\pi}{2}, y = \frac{1}{2}$ ft on their c	A1ft (3)
Notes		(a) 1 st M: Use of $\frac{dy}{dt} \cdot \frac{dt}{dx}$ (even if integrated 1/t)	[14]
		2 nd M: Substituting for $\frac{dy}{dx}$, y, y ² to form d.e. in x and t only	
		(b) 1^{st} M: For $e^{\int -\cot x dx}$ (allow $e^{\int \cot x dx}$) and attempt at integrating 2^{nd^*} M: Multiplying by integrating factor (requires at least two terms "correct" for their IF.) (can be implied) 3rdA1f t: is only for those who have LF = sinr or - sinr	
		$\frac{d}{dx}(t\sin x) = -1$ equivalent integral	
		(c) M: Substituting to find $t = 1/y$ in their solution to (b)	
		(d) M: Using $y = \frac{\sqrt{2}}{3}, x = \frac{\pi}{4}$ to find a value for <i>c</i> .	

January 2009 6667 Further Pure Mathematics FP1 (new) Mark Scheme

Question Number	Scheme	Marks
1		
	x - 3 is a factor	B1
	$f(x) = (x-3)(2x^2 - 2x + 1)$	M1 A1
	Attempt to solve quadratic i.e. $x = \frac{2 \pm \sqrt{4-8}}{4}$	M1
	$x = \frac{1 \pm i}{2}$	A1 [5]

Notes:

First and last terms in second bracket required for first M1 Use of correct quadratic formula for their equation for second M1

Question Number		Scheme	Marks
2	(a)	$6\sum r^{2} + 4\sum r - \sum 1 = 6\frac{n}{6}(n+1)(2n+1) + 4\frac{n}{2}(n+1), -n$	M1 A1, B1
		$=\frac{n}{6}(12n^2+18n+6+12n+12-6) \text{ or } n(n+1)(2n+1)+(2n+1)n$	M1
		$=\frac{n}{6}(12n^2+30n+12)=n(2n^2+5n+2) = n(n+2)(2n+1) *$	A1 (5)
	(b)	$\sum_{r=1}^{20} (6r^2 + 4r - 1) - \sum_{r=1}^{10} (6r^2 + 4r - 1) = 20 \times 22 \times 41 - 10 \times 12 \times 21$	M1
		= 15520	A1 (2) [7]

(a) First M1 for first 2 terms, B1 for -nSecond M1 for attempt to expand and gather terms. Final A1 for correct solution only

(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1

Question Number	Scheme	Marl	ĸs
3 (a)	$xy = 25 = 5^2$ or $c = \pm 5$	B1	(1)
(b)	A has co-ords $(5, 5)$ and B has co-ords $(25, 1)$	B1	
	Mid point is at (15, 3)	M1A1	(3) [4]

(a) xy = 25 only B1, $c^2 = 25$ only B1, c = 5 only B1

(b) Both coordinates required for B1 Add theirs and divide by 2 on both for M1

Question Number	Scheme	Marks
4	When $n = 1$, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $\frac{1}{1+1} = \frac{1}{2}$. So LHS = RHS and result true for $n = 1$	B1
	Assume true for $n = k$; $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$	M1
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$	M1 A1
	and so result is true for $n = k + 1$ (and by induction true for $n \in \mathbb{Z}^+$)	B1 [5]

Evaluate both sides for first B1 Final two terms on second line for first M1 Attempt to find common denominator for second M1. Second M1 dependent upon first. k + 1

 $\frac{k+1}{k+2} \text{ for A1}$

'Assume true for n = k 'and 'so result true for n = k + 1' and correct solution for final B1

Question Number		Scheme		Marks	5
5	(a)	attempt evaluation of $f(1.1)$ and $f(1.2)$ (-looking for sign change)	M1		
		$f(1.1) = 0.30875$, $f(1.2) = -0.28199$ Change of sign in $f(x) \Longrightarrow$ root in the interval	A1		(2)
	(b)	$f'(x) = \frac{3}{2}x^{-\frac{1}{2}} - 9x^{-\frac{1}{2}}$	M1	A1 A′	1 (3)
	(c)	f(1.1) = 0.30875 $f'(1.1) = -6.37086$	B1	B1	
		$x_1 = 1.1 - \frac{0.30875}{-6.37086}$ = 1.15(to 3 sig.figs.)	M1 A1		(4) [9]

(a) awrt 0.3 and -0.3 and indication of sign change for first A1

(b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1

(c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect

Evidence of Newton-Raphson for M1

Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme	Marks
6	At $n = 1$, $u_n = 5 \times 6^0 + 1 = 6$ and so result true for $n = 1$ Assume true for $n = k$; $u_k = 5 \times 6^{k-1} + 1$, and so $u_{k+1} = 6(5 \times 6^{k-1} + 1) - 5$ $\therefore u_{k+1} = 5 \times 6^k + 6 - 5$ $\therefore u_{k+1} = 5 \times 6^k + 1$ and so result is true for $n = k + 1$ and by induction true for $n \ge 1$	B1 M1, A1 A1 B1 [5]

6 and so result true for n = 1 award B1

Sub u_k into u_{k+1} or M1 and A1 for correct expression on right hand of line 2

Second A1 for $\therefore u_{k+1} = 5 \times 6^k + 1$

'Assume true for n = k' and 'so result is true for n = k + 1' and correct solution for final B1

Que Nun	estion nber	Scheme	Marks
7	(a)	The determinant is $a - 2$	M1
		$\mathbf{X}^{-1} = \frac{1}{a-2} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$	M1 A1 (3)
	(b)	$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1
		Attempt to solve $2 - \frac{1}{a-2} = 1$, or $a - \frac{a}{a-2} = 0$, or $-1 + \frac{1}{a-2} = 0$, or $-1 + \frac{2}{a-2} = 1$	M1
		To obtain $a = 3$ only	A1 cso (3) [6]
		Alternatives for (b) If they use $X^2 + I = X$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1 If they use $X^2 + X^{-1} = O$, they can score the B1 then marks for solving If they use $X^3 + I = O$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1	

(a) Attempt *ad-bc* for first M1

$$\frac{1}{\det} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$$
 for second M1
(b) Final A1 for correct solution only

Question Number		Scheme	Marks
8	(a)	$\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \qquad \text{or } 2y\frac{dy}{dx} = 4a$ The gradient of the tangent is $\frac{1}{q}$	M1 A1
		The equation of the tangent is $y - 2aq = \frac{1}{q}(x - aq^2)$	M1
		So $yq = x + aq^2$ *	A1 (4)
	(b)	<i>R</i> has coordinates (0, <i>aq</i>)	B1
		The line <i>l</i> has equation $y - aq = -qx$	M1A1 (3)
	(c)	When $y = 0$ $x = a$ (so line <i>l</i> passes through $(a, 0)$ the focus of the parabola.)	B1 (1)
	(d)	Line <i>l</i> meets the directrix when $x = -a$: Then $y = 2aq$. So coordinates are $(-a, 2aq)$	M1:A1 (2) [10]

(a) $\frac{dy}{dx} = \frac{2a}{2aq}$ OK for M1 Use of y = mx + c to find *c* OK for second M1 Correct solution only for final A1

(b) -1/(their gradient in part a) in equation OK for M1

(c) They must attempt y = 0 or x = a to show correct coordinates of R for B1

(d) Substitute x = -a for M1. Both coordinates correct for A1.

Question Number	Scheme	Marks
9 (a)	$z_{2} = \frac{12 - 5i}{3 + 2i} \times \frac{3 - 2i}{3 - 2i} = \frac{36 - 24i - 15i - 10}{13}$ $= 2 - 3i$	M1 A1
(b)	P(3, 2) $Re z$	(2) B1 B1ft
(C)	$Q(2, -3) \qquad P: B1, Q: B1ft$ $grad. OP \times grad. OQ = \frac{2}{3} \times -\frac{3}{2}$ $= -1 \qquad \Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit)$	(2)
OR	$\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$ $Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}} \qquad M1$	M1 A1 (2)
(d)	$\frac{\Rightarrow \angle POQ = \frac{\pi}{2} (\texttt{*}) \qquad A1}{z = \frac{3+2}{2} + \frac{2+(-3)}{2}i}$	M1
(e)	$\frac{1}{r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}}$	A1 (2) M1 A1
	$=\frac{\sqrt{20}}{2}$ or exact equivalent	(2) [10]

(a)
$$\times \frac{3-2i}{3-2i}$$
 for M1

- (b) Position of points not clear award B1B0
- (c) Use of calculator / decimals award M1A0
- (d) Final answer must be in complex form for A1
- (e) Radius or diameter for M1

Question Number		Scheme	Ma	rks
10	(a)	A represents an enlargement scale factor $3\sqrt{2}$ (centre <i>O</i>)		
		B represents reflection in the line $y = x$ C represents a rotation of $\frac{\pi}{4}$, i.e.45° (anticlockwise) (about O)	B1 B1	(4)
	(b)	$\begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix}$	M1 A1	(2)
	(c)	$ \begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} $	B1	(1)
	(d)	$\begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 - 15 & 4 \\ 0 & 15 & 21 \end{pmatrix} = \begin{pmatrix} 0 & 90 & 51 \\ 0 & 0 & 75 \end{pmatrix} $ so (0, 0), (90, 0) and (51, 75)	M1A1A	A1A1 (4)
	(e)	Area of $\triangle OR'S'$ is $\frac{1}{2} \times 90 \times 75 = 3375$	B1	
		Determinant of E is -18 or use area scale factor of enlargement So area of $\triangle ORS$ is $3375 \div 18 = 187.5$	M1A1	(3) [14]

(a) Enlargement for M1 $3\sqrt{2}$ for A1

(b) Answer incorrect, require CD for M1

(c) Answer given so require **DB** as shown for B1

(d) Coordinates as shown or written as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 90 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 51 \\ 75 \end{pmatrix}$ for each A1

(e) 3375 B1 Divide by theirs for M1

January 2009 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Mark	S
1	$-6\mathbf{i} + \mathbf{j} = \mathbf{u} + 3(2\mathbf{i} - 5\mathbf{j})$ $\Rightarrow \mathbf{u} = -12\mathbf{i} + 16\mathbf{j}$ $\Rightarrow u = \sqrt{(-12)^2 + 16^2} = 20$	M1 A1 A1 cso M1 A1	[5]
2 (a) (b)	$u \rightarrow u \rightarrow$	B1 B1 M1 A1 A1	(2) (3) [5]
3 (a) (b) (c)	$2u \rightarrow \leftarrow 4u \qquad km2u - 4mu = -kmu + mv$ $km \qquad m \qquad u(3k - 4) = v$ $u \leftarrow \rightarrow v$ $k > 2 \Rightarrow v > 0 \Rightarrow \text{ dir}^n \text{ of motion reversed}$ For B, $m(u(3k - 4)4u)$ = 7mu	M1 A1 A1 M1A1A1 cso M1 A1 f. A1	(3) (3) .t. (3) [9]

Question Number			Scheme	Marks	
4 ((a) (b)	$P Q \qquad K S \qquad \qquad$	C + D = 120g M(Q), $80g.0.8 - 40g.0.4 = D.1.6solvingC = 90g; D = 30g$	M1 A1 M1 A1 M1 A1 A1	(7)
			2F + F = 40g + 20g + 60g M(Q), $60gx + 20g.0.8 = 40g.0.4 + F.1.6$ solving $QX = x = \frac{16}{15}$ m = 1.07m	M1 A1 M1 A1 M1 A1	(6) [13]

Question Number	Scheme	Marks
5 (a)	PN 1.1g	B2 -1 e.e.o.o. (labels not needed) (2)
(b)	$F = \frac{1}{2}R$ $(\uparrow), R \cos \alpha + F \sin \alpha = mg$ $R = \frac{1.1g}{(\cos \alpha + \frac{1}{2} \sin \alpha)} = 9.8 \text{ N}$ $(\rightarrow), P + \frac{1}{2}R \cos \alpha = R \sin \alpha$ $P = R(\sin \alpha - \frac{1}{2} \cos \alpha)$ $= 1.96$	B1 M1 A2 M1 A1 (6) M1 A2 M1 A1 (5) [13]

Question Number	Scheme	Marks
6 (a	j $\tan \theta = \frac{2}{1} \Rightarrow \theta = 63.4^{\circ}$ angle is 153.4°	M1 A1 A1 (3)
(b	$(4+p)\mathbf{i} + (q-5)\mathbf{j}$ (q-5) = -2(4+p) 2p+q+3 = 0 *	B1 M1 A1 A1 (4)
(c	$q = 1 \Rightarrow p = -2$ $\Rightarrow \mathbf{R} = 2\mathbf{i} - 4\mathbf{j}$ $\Rightarrow \mathbf{R} = \sqrt{2^2 + (-4)^2} = \sqrt{20}$ $\sqrt{20} = m8\sqrt{5}$ $\Rightarrow m = \frac{1}{4}$	B1 M1 M1 A1 f.t. M1 A1 f.t. A1 cao (7) [14]

Question Number	Scheme	Marks
7 (a)	$T - 5g \sin \alpha = 5a$ 15g - T = 15a solving for a a = 0.6g solving for T T = 6g	M1 A1 M1 A1 M1 A1 M1 A1 (8)
(b)	For Q : $5g - N = 5a$ N = 2g	M1 A1 A1 f.t. (3)
(c)	$(90^{\circ} - \alpha) = 12g\cos 26.56.^{\circ}$ $F = 2T\cos(\frac{90^{\circ} - \alpha}{2}) = 12g\cos 26.56.^{\circ}$ = 105 N	M1 A2 A1 f.t. A1 (5) [16]

January 2009 6678 Mechanics M2 Mark Scheme

Question Number	Scheme		Marks	
1	RT	F = ma parallel to the slope, T - 1500g sin θ - 650 = 1500a	M1* A1	
		Tractive force, $30000 = T \times 15$	M1*	
	650	$a = \frac{\frac{30000}{15} - 1500(9.8)(\frac{1}{14}) - 650}{1500}$	d*M1	
		$0.2 ({\rm m \ s^{-2}})$	A1	
				(5) [5]
2 (a)		$\mathbf{R}(\uparrow): R = 25g + 75g(=100g)$	B1	
	$S \longleftarrow B$	$F = \mu R \Longrightarrow F = \frac{11}{25} \times 100g$	M1	
	c /	= 44g (=431)	A1	
(b)	R 75g H	M(A): $25g \times 2\cos\beta + 75g \times 2.8\cos\beta$ $= S \times 4\sin\beta$ $R(\leftrightarrow): F = S$	M1 A2,1,0	(3)
	$\xrightarrow{\qquad A \longrightarrow F} F \qquad 1$	$76g\sin\beta = 260g\cos\beta$	M1A1	
	, ,	$\beta = 56(^{\circ})$	A1	
				(6)
(c)	So that Reece's weight acts directly at th	e point C.	B1	[10]

Question Number		Scheme	Marks			
3	(a)	$\begin{array}{c} R \\ \uparrow \end{array} \qquad \qquad$	B1			
		$F = \mu R \implies F = \frac{4}{7} (10g) = 56$	B1			
		$\therefore \text{ WD against friction} = \frac{4}{7} (10g)(50)$	M1			
		10g 2800(J)	A1			
Or	(b) (b)	$70(50) - "2800" = \frac{1}{2}(10)v^{2} - \frac{1}{2}(10)(2)^{2}$ $700 = 5v^{2} - 20, \ 5v^{2} = 720 \implies v^{2} = 144$ Hence, $v = \underline{12} \ (m s^{-1})$ $N2L(\rightarrow): \ 70 - \frac{4}{7}R = 10a$ $70 - \frac{4}{7} \times 10g = 10a, \ (a = 1.4)$ $AB(\rightarrow): v^{2} = (2)^{2} + 2(1.4)(50)$ Hence, $v = \underline{12} \ (m s^{-1})$	(4) M1* A1ft d*M1 A1 cao (4) M1* A1ft d*M1 A1 cao (4)			
4	(a) (b)	$v = 10t - 2t^{2}, \ s = \int v dt$ = $5t^{2} - \frac{2t^{3}}{3}(+C)$ $t = 6 \Rightarrow s = 180 - 144 = 36 (m)$ $\underline{s} = \int v dt = \frac{-432t^{-1}}{-1}(+K) = \frac{432}{\underline{t}}(+K)$ $t = 6, \ s = "36" \Rightarrow 36 = \frac{432}{6} + K$ $\Rightarrow K = -36$ At $t = 10, \ s = \frac{432}{10} - 36 = \underline{7.2}$ (m)	[8] M1 A1 (3) <u>B1</u> M1* A1 d*M1 <u>A1</u> (5)			
			[8]			
Question Number				Scheme		Marks
--------------------	-----	--	-----------------------------	--	---------------	-----------------
5	(a)		7	\square	\square	
		MR	108	18 <i>π</i>	$108 + 18\pi$	B1
		$x_i (\rightarrow)$ from <i>AD</i>	4	6	×	B1
		$y_i (\downarrow)$ from <i>BD</i>	6	$-\frac{8}{\pi}$	y y	
		<i>AD</i> (→): 108(4) + 18.	π (6) = (108 -	+18π) [−]		M1
		$\bar{x} = \frac{432 + 108\pi}{108 + 18\pi} = 4$.68731 =	<u>4.69</u> (cm) (3 sf)	AG	A1 (4)
	(b)	$y_i (\downarrow)$ from <i>BD</i>	6	$-\frac{8}{\pi}$	у	B1 oe
		<i>BD</i> (↓): 108(6) + 18π − 504	$f(-\frac{8}{\pi}) = (108)$	+18π)y		M1 A1ft
		$y = \frac{100}{108 + 18\pi} = 3.0$	6292 = 3	.06 (cm) (3 sf)		A1 (4)
	(c)	D 12-	- x	vertical B		M1
		θ = required a	tan	$\theta = \frac{\overline{y}}{12 - 4.68731}$ - 3.06392		dM1
		$\theta = 22.72641 = 23$	<u>3</u> (nearest deg	$-\frac{12-4.687}{12-4.687}$	31	A1 A1 (4)
						[12]

Quest Numb	tion ber	Scheme	N	Narks
6	(a)	Horizontal distance: $57.6 = p \ge 3$ p = 19.2	M1 A1	(2)
	(b)	Use $s = ut + \frac{1}{2}at^2$ for vertical displacement.	M1	
		$-0.9 = q \times 3 - \frac{1}{2}g \times 3^2$	A1	
		$-0.9 = 3q - \frac{9g}{2} = 3q - 44.1$		
		$q = \frac{43.2}{3} = 14.4$ *AG*	A1	CSO
	(c)	initial speed $\sqrt{p^2 + 14.4^2}$ (with their <i>p</i>)	M1	(3)
		$=\sqrt{576} = \underline{24} \text{ (m s}^{-1})$	A1	cao
	(d)	$\tan \alpha = \frac{14.4}{p} \left(=\frac{3}{4}\right) $ (with their <i>p</i>)	B1	(2)
	(e)	When the ball is 4 m above ground:		(1)
		$3.1 = ut + \frac{1}{2}at^2 \text{ used}$	M1	
		$3.1 = 14.4t - \frac{1}{2}gt^2$ o.e $(4.9t^2 - 14.4t + 3.1 = 0)$	A1	
		$\Rightarrow t = \frac{14.4 \pm \sqrt{(14.4)^2 - 4(4.9)(3.1)}}{2(4.9)}$ seen or implied	M1	
		$t = \frac{14.4 \pm \sqrt{146.6}}{9.8} = 0.023389$ or 2.70488 awrt 0.23 and 2.7	A1	
		duration = $2.70488 0.23389$	M1	
or 6	(e)	-2.47 of 2.5 (seconds) M1A1M1 as above		(6)
	(0)	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1	
		Duration $2 \times \frac{\sqrt{146.6}}{2.2}$ o.e.	M1	
		9.8 = 2.47 or 2.5 (seconds)	A1	(6)
	(f)	Eg. : Variable ' g ', Air resistance, Speed of wind, Swing of ball, The ball is not a particle	B1	(0)
				(1) [15]

Quest Numb	tion Der	Scheme	Marks	
7	(a)	Before $2u$ u Correct use of NEL $P(3m)$ $2m$ Q	M1*	
		After \xrightarrow{x} $y - x = e(2u + u)$ o.e.	A1	
		CLM (\rightarrow) : $3m(2u) + 2m(-u) = 3m(x) + 2m(y) (\Rightarrow 4u = 3x + 2y)$	B1	
		Hence $x = y - 3eu$, $4u = 3(y-3eu) + 2y$, $(u(9e+4) = 5y)$	d*M1	
		Hence, speed of $Q = \frac{1}{5}(9e+4)u$ AG	A1 cso	
			(5	5)
	(b)	$x = y - 3eu = \frac{1}{5}(9e + 4)u - 3eu$	M1 [#]	
		Hence, speed P = $\frac{1}{5}(4-6e)u = \frac{2u}{5}(2-3e)$ o.e.	A1	
		$x = \frac{1}{2}u = \frac{2u}{5}(2 - 3e) \Longrightarrow 5u = 8u - 12eu, \Longrightarrow 12e = 3 \qquad \text{\& solve for } e$	d [#] M1	
		gives, $e = \frac{3}{12} \implies e = \frac{1}{4}$ AG	A1	
			(4	4)
Or	(b)	Using NEL correctly with given speeds of P and Q	M1 [#]	
		$3eu = \frac{1}{5}(9e+4)u - \frac{1}{2}u$	A1	
		$3eu = \frac{9}{5}eu + \frac{4}{5}u - \frac{1}{2}u$, $3e - \frac{9}{5}e = \frac{4}{5} - \frac{1}{2}$ & solve for e	d [#] M1	
		$\frac{6}{5} \boldsymbol{e} = \frac{3}{10} \implies \boldsymbol{e} = \frac{15}{60} \implies \boldsymbol{e} = \frac{1}{4}.$	A1	
			(4	1)
	(c)	Time taken by Q from A to the wall $=\frac{d}{\frac{y}{2}} = \left\{\frac{4d}{5u}\right\}$	$M1^{\dagger}$	
		Distance moved by <i>P</i> in this time $=\frac{u}{2} \times \frac{d}{y} \left(=\frac{u}{2} \left(\frac{4d}{5u}\right) = \frac{2}{5}d\right)$	A1	
		Distance of P from wall = $d - x \left(\frac{d}{y}\right)$; = $d - \frac{2}{5}d = \frac{3}{5}d$ AG	d [†] M1; A1 cso	
			(4	1)
or	(c)	Ratio speed P:speed Q = x:y = $\frac{1}{2}u:\frac{1}{5}(\frac{9}{4}+4)u = \frac{1}{2}u:\frac{5}{4}u = 2:5$	$M1^{\dagger}$	
		So if Q moves a distance d, P will move a distance $\frac{2}{5}d$	A1	
		Distance of P from wall $= d - \frac{2}{5}d$; $= \frac{3}{5}d$ AG cso	d [†] M1; A1	
			(4	4)

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Time for P, $T_{AB} = \frac{\frac{3d}{5} - X}{\frac{1}{2}u}$, Time for Q, $T_{WB} = \frac{X}{\frac{1}{4}u}$ from their y	B1ft
	Hence $T_{AB} = T_{WB} \implies \frac{\frac{3d}{5} - X}{\frac{1}{2}u} = \frac{X}{\frac{1}{4}u}$	M1
	gives, $2\left(\frac{3d}{5}-x\right)=4x \Rightarrow \frac{3d}{5}-x=2x$, $3x=\frac{3d}{5} \Rightarrow x=\frac{1}{5}d$	A1 cao
		(4)
or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	speed $P = x = \frac{1}{2}u$, speed P: new speed $Q = \frac{1}{2}u:\frac{1}{4}u = 2:1$ from their y	B1ft
	Distance of <i>B</i> from wall = $\frac{1}{3} \times \frac{3d}{5}$; = $\frac{d}{5}$ their $\frac{1}{2+1}$	M1; A1
		(4)
2 nd or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Combined speed of P and $Q = \frac{1}{2}u + \frac{1}{4}u = \frac{3}{4}u$	
	Time from wall to 2^{nd} collision $=\frac{\frac{3d}{5}}{\frac{3u}{4}} = \frac{3d}{5} \times \frac{4}{3u} = \frac{4d}{5u}$ from their y	B1ft
	Distance of <i>B</i> from wall = (their speed)x(their time) = $\frac{u}{4} \times \frac{4d}{5u}$; = $\frac{1}{5}d$	M1; A1
		(4) [17]

January 2009 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
1	N2L $3a = -\left(9 + \frac{15}{\left(t+1\right)^2}\right)$	B1
	$3v = -9t + \frac{15}{t+1}(+A)$	M1 A1ft
	$v = 0, t = 4 \implies 0 = -36 + 3 + A \implies A = 33$	M1 A1
	$v = -3t + \frac{5}{t+1} + 11$	
	$t = 0 \implies v = 16$	M1 A1 (7) [7]
2 (a)	$(\leftarrow) \qquad T \sin \theta = \frac{4}{3} mg$ $(\leftarrow) \qquad T \sin \theta = \frac{4}{3} mg$ $(\uparrow) \qquad T \cos \theta = mg$ $T^{2} = \left(\frac{4}{3} mg\right)^{2} + (mg)^{2}$ Leading to $T = \frac{5}{3} mg$ HL $T = \frac{\lambda x}{a} \implies \frac{5}{3} mg = \frac{3mge}{a}$ ft their T $e = \frac{5}{9}a$ $E = \frac{\lambda x^{2}}{2a} = \frac{3mg}{2a} \times \left(\frac{5}{9}a\right)^{2} = \frac{25}{54} mga$	M1 A1 A1 A1 A1 (5) M1 A1ft M1 A1 (4) [9]

Question Number	Scheme	Marks
3	$\omega = \frac{80 \times 2\pi}{60} \text{ rad s}^{-1} \left(= \frac{8\pi}{3} \approx 8.377 \right)$ Accept $v = \frac{16\pi}{75} \approx 0.67 \text{ ms}^{-1}$ as equivalent	B1
	(†) $R = mg$ For least value of μ (\leftarrow) $\mu mg = mr\omega^2$	B1 M1 A1=A1
	$\mu = \frac{0.08}{9.8} \times \left(\frac{8\pi}{3}\right)^2 \approx 0.57$ accept 0.573	M1 A1 (7) [7]
4 (a) (b)	$a = 8$ $T = \frac{25}{2} = \frac{2\pi}{\omega} \implies \omega = \frac{4\pi}{25} (\approx 0.502 \dots)$ $v^{2} = \omega^{2} (a^{2} - x^{2}) \implies v^{2} = \left(\frac{4\pi}{25}\right)^{2} (8^{2} - 3^{2}) \qquad \text{ft their } a, \omega$ $v = \frac{4\pi}{25} \sqrt{55} \approx 3.7 (\text{m h}^{-1}) \qquad \text{awrt } 3.7$ $x = a \cos \omega t \implies 3 = 8 \cos\left(\frac{4\pi}{25}t\right) \qquad \text{ft their } a, \omega$ $t \approx 2.3602 \dots$ time is 12 22	B1 M1 A1 M1 A1ft M1 A1 (7) M1 A1ft M1 A1 (4) [11]

Question Number	Scheme	Marks
5 (a) (b)	Let x be the distance from the initial position of B to C GPE lost = EPE gained $mgx \sin 30^\circ = \frac{6mgx^2}{2a}$ Leading to $x = \frac{a}{6}$ $AC = \frac{7a}{6}$ The greatest speed is attained when the acceleration of B is zero, that is where the forces on B are equal. (\mathbb{N}) $T = mg \sin 30^\circ = \frac{6mge}{a}$ $e = \frac{a}{12}$ CE $\frac{1}{2}mv^2 + \frac{6mg}{2a} \left(\frac{a}{12}\right)^2 = mg\frac{a}{12} \sin 30^\circ$ Leading to $v = \sqrt{\left(\frac{ga}{24}\right)} = \frac{\sqrt{6ga}}{12}$ Alternative approaches to (b) are considered on the next page.	M1 A1=A1 M1 A1 (5) M1 A1 M1 A1=A1 M1 A1 (7) [12]

Question Number	Scheme	Marks
5	Alternative approach to (b) using calculus with energy.	
	Let distance moved by <i>B</i> be <i>x</i>	
	CE $\frac{1}{2}mv^2 + \frac{6mg}{2a}x^2 = mgx\sin 30^\circ$	M1 A1=A1
	$v^2 = gx - \frac{6g}{a}x^2$	
	For maximum v $\frac{d}{dx}(v^2) = 2v\frac{dv}{dx} = g - \frac{12g}{a}x = 0$	M1 A1
	$x = \frac{a}{12}$	
	$v^2 = g\left(\frac{a}{12}\right) - \frac{6g}{a}\left(\frac{a}{12}\right)^2 = \frac{ga}{24}$	M1
	$v = \sqrt{\left(\frac{ga}{24}\right)}$	A1 (7)
	Alternative approach to (b) using calculus with Newton's second law.	
	As before, the centre of the oscillation is when extension is $\frac{a}{12}$	M1 A1
	N2L $mg\sin 30^\circ - T = m\ddot{x}$	
	$\frac{1}{2}mg - \frac{6mg\left(\frac{a}{12} + x\right)}{a} = m\ddot{x}$	M1 A1
	$\ddot{x} = -\frac{6g}{a}x \implies \omega^2 = \frac{6g}{a}$	A1
	$v_{\max} = \omega a = \sqrt{\left(\frac{6g}{a}\right)} \times \frac{a}{12} = \sqrt{\left(\frac{ga}{24}\right)}$	M1 A1 (7)

Question Number	Scheme	Marks
6 (a)	$\int y^2 dx = \int (4 - x^2)^2 dx = \int (16 - 8x^2 + x^4) dx$ = $16x - \frac{8x^3}{3} + \frac{x^5}{5}$ $\left[16x - \frac{8x^3}{3} + \frac{x^5}{5} \right]_0^2 = \frac{256}{15}$	M1 A1 M1 A1
	$\int xy^2 dx = \int x \left(4 - x^2\right)^2 dx = \int \left(16x - 8x^3 + x^5\right) dx$ $= 8x^2 - 2x^4 + \frac{x^6}{6}$ $\left[8x^2 - 2x^4 + \frac{x^6}{6}\right]_0^2 = \frac{32}{3}$ $\overline{x} = \frac{\int xy^2 dx}{\int y^2 dx} = \frac{32}{3} \times \frac{15}{216} = \frac{5}{8} \bigstar$	M1 A1 M1A1 M1 A1 (10)
(b)	$A \times \overline{x} = (\pi r^2 l) \times \frac{l}{2}$ $\frac{256}{15} \pi \times \frac{5}{8} = \pi \times 16l \times \frac{l}{2}$ Leading to $l = \frac{2\sqrt{3}}{3}$ accept exact equivalents or awrt 1.15	M1 A1 ft M1 A1 (4) [14]

Question Number	Scheme	Marks
7 (a)	Let speed at C be u CE $\frac{1}{2}mu^{2} - \frac{1}{2}m\left(\frac{ag}{4}\right) = mga(1 - \cos\theta)$ $u^{2} = \frac{9ga}{4} - 2ga\cos\theta$	M1 A1
	$mg\cos\theta (+R) = \frac{mu^2}{a}$	M1 A1
	$mg\cos\theta = \frac{9mg}{4} - 2mg\cos\theta$ eliminating u	M1
	Leading to $\cos\theta = \frac{3}{4}$ *	M1 A1 (7)
(b)	At C $u^2 = \frac{9ga}{4} - 2ga \times \frac{3}{4} = \frac{3}{4}ga$	B1
	$(\rightarrow) \qquad u_x = u\cos\theta = \sqrt{\left(\frac{3ga}{4}\right)} \times \frac{3}{4} = \sqrt{\left(\frac{27ga}{64}\right)} = 2.033\sqrt{a}$	M1 A1ft
	$(\downarrow) \qquad u_y = u\sin\theta = \sqrt{\left(\frac{3ga}{4}\right)} \times \frac{\sqrt{7}}{4} = \sqrt{\left(\frac{21ga}{64}\right)} = 1.792\sqrt{a}$	M1
	$v_y^2 = u_y^2 + 2gh \implies v_y^2 = \frac{21}{64}ga + 2g \times \frac{7}{4}a = \frac{245}{64}ga$	M1 A1
	$\tan\psi = \frac{v_y}{u_x} = \sqrt{\left(\frac{245}{27}\right)} \approx 3.012\dots$	M1
	$\psi \approx 72^{\circ}$ awrt 72° Or 1.3° (1.2502 [°]) awrt 1.3°	A1 (8) [15]
	Alternative for the last five marks Let speed at P be v.	
	CE $\frac{1}{2}mv^2 - \frac{1}{2}m\left(\frac{ag}{4}\right) = mg \times 2a$ or equivalent	M1
	$v^2 = \frac{17mga}{4}$	M1 A1
	$\cos\psi = \frac{u_x}{v} = \sqrt{\left(\frac{27}{64} \times \frac{4}{17}\right)} = \sqrt{\left(\frac{27}{272}\right)} \approx 0.315$	M1
	$\psi \approx 72^{\circ}$ awrt 72°	A1
	<i>Note: The time of flight from C to P is</i> $\frac{\sqrt{235} - \sqrt{21}}{8} \sqrt{\left(\frac{a}{g}\right)} \approx 1.38373 \sqrt{\left(\frac{a}{g}\right)}$	

January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marl	(S
1 (a)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ 21.4 × 96	M1 A1	(2)
(b)	$S_{xy} = 313.7 - \frac{21.1836}{10} = 108.26$ $b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1	(3)
(c)	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$ y = -10.7 + 9.48x Every (extra) hour spent using the programme produces about <u>9.5 marks improvement</u>	A1 B1ft	(4) (1)
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1	(2)
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1	(1) [11]
(a)	M1 for a correct expression $1^{\text{st}} A1$ for AWRT 11.4 for S_{xx} $2^{\text{nd}} A1$ for AWRT 108 for S_{xy}		
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A 1^{st} M1 for using their values in correct formula 1^{st} A1 for AWRT 9.5 2^{nd} M1 for correct method for <i>a</i> (minus sign required) 2^{nd} A1 for equation with <i>a</i> and <i>b</i> AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)	A1A1	
(c)	 Must have a full equation with a and b correct to awrt 3 sf B1ft for comment conveying the idea of <u>b marks per hour</u>. Must mention value of b to ft their value of b. No need to mention "extra" but must mention "marks" and "he.g. "9.5 times per hour" scores B0 	out can nour(s)"	
(d)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21		
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the ra</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.	

Question Number	Scheme	Marl	ĸs
2 (a)	<i>E</i> = take regular exercise <i>B</i> = always eat breakfast $P(E \cap B) = P(E B) \times P(B)$ $= \frac{9}{25} \times \frac{2}{3} = 0.24$ or $\frac{6}{25}$ or $\frac{18}{75}$	M1 A1	(2)
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or} P(E' \mid B') \text{or} P(B' \cap E) \text{or} P(B \cap E')$	M1	
	$= \frac{62}{75} \qquad \left \begin{array}{c} = \frac{13}{25} \\ P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \\ \end{array} \right = \frac{12}{75} \qquad \left \begin{array}{c} = \frac{32}{75} \\ 0.17\dot{3} \\ \end{array} \right $	M1 A1	(4)
(c)	$P(E B) = 0.36 \neq 0.40 = P(E) \text{ or } P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are not statistically independent	M1 A1	(2)
	So I und D ure <u>not</u> suitisticuity independent		[8]
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(E B) × P(B) and at least one correct value seen. A1 for 0.24 or example $\frac{1}{25} \times \frac{2}{3} + \frac{2}{3} $	et equiv.	
(b)	NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. 1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) <u>Or</u> a full method for P(E' B') requires 1 - P(E B') and equation for P(E B'): (a)	$+\frac{x}{3} = \frac{2}{5}$	
	C) Or a full method for $P(B' \cap E)$ or $P(B \cap E')$ [or other valid method] $2^{nd} M1$ for a method leading to answer e.g. $1 - P(E \cup B)$ or $P(B') \times P(E' B')$ or $P(B') - P(B' \cap E)$ or $P(E') - P(B \cap E')$ Venn Diagram 1 st M1 for diagram with attempt at $\frac{2}{5} - P(B \cap E)$ or $\frac{2}{3} - P(B \cap E)$. C $1^{st} A1$ for a correct first probability as listed or 32, 18 and 12 on Venn Diagram $2^{nd} M1$ for attempting 75 - their (18 +32 + 12) M1 for identifying suitable values to test for independence e.g. $P(E) = 0.40$ and $P(E B Or P(E) \times P(B) =$ and $P(E \cap B) =$ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values see A1 for correct values and a correct comment		(a)
(c)			nere
	Diagrams You may see these or find these useful for identifying probabilities.		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array}	bres M1A scores M $=\frac{1}{3} \times \frac{3}{5}$.0 1 A 0

Ques Num	tion ber			Scheme			Mark	<s< th=""></s<>
3	(a)	E(X) = 0 >	$E(X) = 0 \times 0.4 + 1 \times 0.3 + \dots + 3 \times 0.1, = 1$			M1, A1	(2)	
	(b)	F(1.5) = [P]	$(X \le 1.5) =] P(X)$	$K \le 1$), = 0.4 + 0.3 = 0	.7		M1, A1	(2)
	(c)	$\mathrm{E}(X^2) = 0$	$^{2} \times 0.4 + 1^{2} \times 0.3$	$++3^2 \times 0.1$, = 2			M1, A1	
		Var(X) = 2	-1^2 , = 1 ((*)			M1, A10	cso (4)
	(d)	Mar (5 2)	$(2)^2 V_{2} (2)^2 V_{2} (2)^$	V) o			AA1 A1	(1)
		var(3-3A)	(-3) = (-3) var(2)	(1), = 9			<i>I</i> WI, AI	(2)
	(e)		Total	Cases	Probability]		
				$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$			
			4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$			
				$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$		DADADA	
			5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$		818181	
			5	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$]	M1	
			6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$		A1	
		Total proba	bility $= 0.03 + 0.0$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15		A1	(6) [16]
	(a)	M1 for a	t least 3 terms see	en. Correct answer only	scores M1A1. Dividing	g by $k \neq 1$	is M0.	
	(b)	M1 for F	F(1,5) = P(X < 1)	[Beware : $2 \times 0.2 + 3 \times 0$	1 = 0.7 but scores M04	A 01		
	(~)		(1.5) $1(1-1)$.			10]		
	(C)	1^{st} M1 for at least 2 non-zero terms seen. $E(X^2) = 2$ alone is M0. Condone calling $E(X)$).
		1^{st} A1 is for an answer of 2 or a fully correct expression. 2^{nd} M1 for u^2 condens 2 1 with a charter 2 u^2 iff 1 is 1 u^2						
ALT		$2^{n\alpha}$ M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 – . Allow $2-\mu^2$, with = 1 even if E						
		$2^{}$ A1 for a fully correct solution with no incorrect working seen, both Ms required.						
		$\sum (x-\mu)^2$	$- \times P(X = x)$					
		1 st M1 for a	an attempt at a ful	Il list of $(x - \mu)^2$ values	and probabilities. 1st A	1 if all corre	ect	
		2 nd M1 for	at least 2 non-zer	o terms of $(x - \mu)^2 \times P($	X = x) seen. 2 nd A1 fo	or $0.4 + 0.2$	+0.4 = 1	
	(d)							
	(u)	M1 for	use of the correct	formula. $-3^2 \operatorname{Var}(X)$ is	M0 unless the final answ	wer is >0 .		
	(e)	Car	n follow through t	their $Var(X)$ for M1				
		1 st B1 for	all cases listed for	or a total of 4 or 5 or 6.	e.g. (2,2) counted twice	e for a total	of 4 is B0	
ALT $2^{nd} B1$ for all cases listed for 2 totals				}				
	3 ^{ra} B1 for a complete list of all 6 cases } These may be highlighted in a Using Cumulative probabilities				lighted in a	table		
		1 st B1 for	one or more cum	nulative probabilities use	d e.g.2 then 2 or more o	r 3 then 1 o	r more	
		2^{nd} B1 for	both cumulative	probabilities used. 3 rd B	1 for a complete list 1, 3	3; 2, <u>≥</u> 2; 3, <u>≥</u>	<u>></u> 1	
		MI for 1 st A1 for	all 6 correct pair of	bit correct probabilities m pabilities listed $(0.03, 0.0)$	$\begin{array}{c} \text{ultiplied} \\ 3 & 0.04 & 0.02 & 0.02 & 0.01 \end{array}$) needn't be	added	
		2^{nd} A1 for 0.15 or exact equivalent only as the final answer.						

Question Number	Scheme	Marks
4 (a)	$Q_2 = 53, Q_1 = 35, Q_3 = 60$	B1, B1,B1
(b)	$Q_3 - Q_1 = 25 \Longrightarrow Q_1 - 1.5 \times 25 = -2.5$ (no outlier)	(3) M1
	$Q_3 + 1.5 \times 25 = 97.5$ (so 110 is an outlier)	A1 (2)
(C)		M1
		A1ft
	0 10 20 30 40 50 60 70 80 90 100 110 120 yminutes	A1ft (3)
(d)	4612	B1. B1.
	$\sum y = 461, \sum y^2 = 24\ 219 \therefore \ S_{yy} = 24219 - \frac{401}{10}, = 2966.9 \ (*)$	B1cso
(e)	10	(3)
	-18.3 -18.3 -18.3 -0.0057 AWRT 0.006 or 6×10^{-3}	
(f)	$r = \frac{1}{\sqrt{3463.6 \times 2966.9}} \text{or} \frac{1}{3205.64} = -0.0037 \text{AWR1} = 0.006 \text{ or} -6 \times 10$	M1 A1 (2)
	r suggests correlation is close to zero so parent's claim is not justified	B1 (1)
(a)	1 st B1 for median	L
	2 rd B1 for lower quartile	
	5 B1 for upper quartile	
(b)	M1 for attempt to find one limitA1 for both limits found and correct. No explicit comment about outliers needed.	
(-)	M1 for a hor and two orbids or	
(C)	1 st A1ft for correct position of box, median and quartiles. Follow through their values.	
	2 nd A1ft for 17 and 77 or "their" 97.5 and *. If 110 is not an outlier then score A0 here	-
	Penalise no gap between end of whisker and outlier. Must label outlier, needn't be with Accuracy should be within the correct square so 97 or 98 will do for 97.5	th *.
	Accuracy should be written the correct square so 37 or 36 will do for 37.5	
(d)	1 st B1 for $\sum y$ N.B. $(\sum y)^2 = 212521$ and can imply this mark	
	2 nd B1 for $\sum y^2$ or at least three correct terms of $\sum (y - \overline{y})^2$ seen.	
	3 rd B1 for complete correct expression seen leading to 2966.9. So all 10 terms of $\sum_{n=1}^{\infty} (1-2n)^{n} = 10^{-10}$	$(y-\overline{y})^2$
(e)	M1 for attempt at correct expression for r. Can ft their S for M1.	
(f)		
	B1 for comment <u>rejecting</u> parent's claim on basis of <u>weak or zero</u> correlation	
	Typical error is "negative correlation so comment is true" which scores B0	
	Weak negative or weak positive correlation is OK as the basis for their rejection	l .

Question Number	Scheme	Mar	ĸs
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by 5 cm 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78-54)}{25} \times 5[=15.3]$ or $10.5 + \frac{(78.75-54)}{25} \times 5[=15.45 \setminus 15.5]$	A1 A1ft	(5)
(c)	IQR = (15.3 - 6.3) = 9		
	$\sum fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u>	M1 A1	
(d)	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27234}{104}} - \bar{x}^2 = \sqrt{262.05} - \bar{x}^2 \qquad \text{AWRT } \underline{9.88}$	M1 A1	(4)
(e)	$Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9]$ or $Q_2 < x$ So data is positively skew	dB1	(2)
	Use median and IQR, since data is skewed or not affected by extreme values or outliers	B1 B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where SF \neq	1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores N	[1A0	
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.5	5 or 53	
	1 st A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3	NR·	
	2^{nd} A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) Mu	<u>st see</u>	
	3^{rd} A1 for correct expressions for both Q_1 and Q_3	<u>some</u>	
(C)	4 th A1ft for IQR, ft their quartiles. Using $(n + 1)$ gives 6.28 and 15.45 <u>m</u>	ethod	
	1 st M1 for attempting $\sum_{x} fx$ and \overline{x}		
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow <i>s</i> = awrt 9.93		
	1 st B1ft for suitable test, values need not be seen but statement must be compatible wi	th	
	2 nd dB1 Dependent upon their test showing positive and for stating positive skew		
(e)	If their test shows negative skew they can score 1 st B1 but lose the second		
	1^{st} B1 for choosing median and IQR. Must mention <u>both</u> . } <u>Award independ</u>	lently	
	2 B1 for suitable reason } e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned		

Question Number	Scheme	Mar	ks
6 (a)	P(X < 20) = P(Z < 39-30)	M1	
	$P(X < 39) = P\left(Z < \frac{1.8}{5}\right)$ = P(Z < 1.8) = <u>0.9641</u> (allow awrt 0.964)	A1	(2)
(b)	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$		
	$1 - 0.1151 = 0.8849$ $\Rightarrow z = -1.2$ (allow ± 1.2)	M1 B1 M1A1	(4)
	$\therefore \frac{d-30}{5} = -1.2 \qquad \qquad \underline{d=24}$		
(C)			
	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$	M1	
	<u>e = 36</u>	A1	(2)
(d)	$P(d \le X \le e) = 1 - 2 \times 0.1151$ = 0.7698 AWRT <u>0.770</u>	M1 A1	(2)
			[10]
	Answer only scores all marks in each section BUT check (b) and (c) are in correct or	rder	
(a)	M1 for standardising with σ , $z = \pm \frac{39 - 30}{5}$ is OK		
	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0)	
(b)	1 st M1 for attempting 1-0.1151. Must be seen in (b) in connection with finding <i>d</i> B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a <i>z</i> value by its use. This mark is only available in part (b).		
	2^{nd} M1 for $\left(\frac{d-30}{5}\right)$ = their negative z value (or equivalent)		
(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$. If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their <i>d</i> for M1 Must explicitly see the method used unless the answer is correct.	here	
(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151 <u>or</u> If their $d <$ their e using their values with $P(X < e) - P(X < d)$ If their $d \ge$ their e then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		

January 2009 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Mark	S
1	The random variable X is the number of daisies in a square. Poisson(3)	B1	
(a)	$1 - P(X \le 2) = 1 - 0.4232$ $1 - e^{-3}(1 + 3 + \frac{3^2}{2!})$	M1	
4.5	= 0.5768	A1	(3)
(b)	P (X ≤ 6) – P (X ≤ 4) =0.9665 – 0.8153 $e^{-3}\left(\frac{3^{2}}{5!} + \frac{3^{2}}{6!}\right)$	M1	
	= 0.1512	A1	(2)
(c)	$\mu = 3.69$	B1	. ,
	$Var(X) = \frac{1386}{80} - \left(\frac{295}{80}\right)^2$	M1	
	= 3.73/3.72/3.71 accept s ² = 3.77	A1	(3)
(D)	For a Poisson model , Mean = Variance ; For these data $3.69 \approx 3.73$ \Rightarrow Poisson model	B1	
(e)	$\frac{e^{-3.6875} \cdot 3.6875^4}{4!} = 0.193$ allow their mean or var	M1	(1)
	Awrt 0.193 or 0.194	A1 ft	(2)

Question Number		Scheme	Marl	٢s
3	(a)	$X \sim B(20, 0.3)$ P ($X \le 2$) = 0.0355 P($X \ge 11$) = 1 = 0.0820 = 0.0171	M1	
	(b)	$F(X \ge 11) = 1 = 0.9829 = 0.0171$ Critical region is $(X \le 2) \cup (X \ge 11)$ Significance level = $0.0355 + 0.0171$, = 0.0526 or 5.26%	A1 A1 M1 A1	(3) (2)
	(c)	Insufficient evidence to reject H_0 Or sufficient evidence to accept H_0 /not significant $x = 3$ (or the value) is not in the critical region or 0.1071> 0.025 Do not allow inconsistent comments	B1 ft B1 ft	(2)

Question Number	Scheme	Marks
4 (a)	$\int_{0}^{10} kt dt = 1$ or Area of triangle = 1 $\left[\frac{kt^{2}}{2}\right]_{0}^{10} = 1$ or 10 x0.5 x 10k = 1 or linear equation in k 50k = 1	M1 M1
	$k = \frac{1}{50}$ cso	A1 (3)
(b)	$\int_{6}^{10} kt dt = \left[\frac{kt^2}{2}\right]_{6}^{10}$ $= \frac{16}{25}$	M1 A1 (2)
(C)	$E(T) = \int_0^{10} kt^2 dt = \left[\frac{kt^3}{3}\right]_0^{10}$ = $6\frac{2}{3}$	M1 A1
	Var (T) = $\int_0^{10} kt^3 dt - \left(6\frac{2}{3}\right)^2 = \left[\frac{kt^4}{4}\right]_0^{10}; -\left(6\frac{2}{3}\right)^2$	M1;M1dep
	$= 50 - (6\frac{2}{3})^2$ = $5\frac{5}{9}$	A1 (5)
(d)	10	B1 (1)
(e)		Б ¹ (1)

Question Number	Scheme	Mark	S
5 (a)	X represents the number of defective components.		
	P (X=1) = $(0.99)^9 (0.01) \times 10 = 0.0914$	M1A1	
(b)	P $(X \ge 2) = 1 - P(X \le 1)$ = 1 - (p) ¹⁰ - (a) = 0.0043	M1 A1√ A1	(2)
(c)	$X \sim \text{Po}(2.5)$	B1B1	
	$P(1 \le X \le 4) = P(X \le 4) - P(X = 0)$ = 0.8912 - 0.0821	M1	
	= 0.809 = 0.809	A1	
			(4)
	Normal distribution used. B1 for mean only		
	Special case for parts a and b If they use 0.1 do not treat as misread as it makes it easier. (a) M1 A0 if they have 0.3874 (b) M1 A1ft A0 they will get 0.2639 (c) Could get B1 B0 M1 A0 For any other values of <i>p</i> which are in the table do not use misread. Check using the tables. They could get (a) M1 A0 (b) M1 A1ft A0 (c) B1 B0 M1 A0		

Qu Nt	lestion umber	Scheme	Marks
6	(a)(i)	$H_0: \lambda = 7$ $H_1: \lambda > 7$	B1
		$X =$ number of visits. $X \sim Po(7)$	B1
		$P(X \ge 10) = 1 - P(X \le 9) \qquad 1 - P(X \le 10) = 0.0985$ - 0.1695 1 - P(X < 0) - 0.1695	M1
		$CR X \ge 11$	A1
		0.1695 > 0.10, $CR X \ge 11$ Not significant or it is not in the critical region or do not reject H ₀ The rate of visits on a Saturday is not greater/ is unchanged	M1 A1 no ft
	(ii)	<i>X</i> = 11	B1 (7)
	(b)	(The visits occur) randomly/ independently or singly or constant rate	B1 (1)
	(c)	[H ₀ : $\lambda = 7$ H ₁ : $\lambda > 7$ (or H ₀ : $\lambda = 14$ H ₁ : $\lambda > 14$)]	
		X~N;(14,14)	B1;B1
		P (X \ge 20) = P $\left(z \ge \frac{19.5 - 14}{\sqrt{14}}\right)$ +/- 0.5, stand = P (z \ge 1.47)	M1 M1
		= 0.0708 or $z = 1.2816$	Aldep both M
		0.0708 < 0.10 therefore significant. The rate of visits is greater on a Saturday	A1dep 2 nd M (6)

Question Number	Scheme	Mark	s
7 (a)	$F(x_0) = \int_1^x -\frac{2}{9}x + \frac{8}{9} dx = \left[-\frac{1}{9}x^2 + \frac{8}{9}x\right]_1^x$	M1A1	
	$= \left[-\frac{1}{9}x^{2} + \frac{8}{9}x \right] - \left[-\frac{1}{9} + \frac{8}{9} \right]$ $= -\frac{1}{9}x^{2} + \frac{8}{9}x - \frac{7}{9}$	A1	(3)
(b)	$F(x) = \begin{cases} 0 & x < 1\\ -\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} & 1 \le x \le 4 \end{cases}$	B1B1√	
(c)	F(x) = 0.75 ; or F(2.5) = $-\frac{1}{9} \times 2.5^2 + \frac{8}{9} \times 2.5 - \frac{7}{9}$	M1;	(2)
	$-\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} = 0.75$		
	$4x^2 - 32^x + 55 = 0$		
	-x + 8x - 15.75 = 0 x = 2.5 = 0.75 cso	A1	
	and $F(x) = 0.25$ $-\frac{1}{9}x^2 + \frac{8}{9}x - \frac{7}{9} = 0.25$ $-x^2 + 8x - 7 = 2.25$	M1	
	$-x^{2} + 8x - 9.25 = 0$ quadratic 3 terms = 0 $-8 \pm \sqrt{8^{2} - 4 \times -1 \times -9.25}$	M1 dep M1 dep	
	$x = \frac{1.40}{2 \times -1}$	A1	(6)
(d)	$Q_3 - Q_2 > Q_2 - Q_1$ Or mode = 1 and mode < median Or mean = 2 and median < mode Sketch of pdf here or be referred to if in a different part of the question	M1	
	Box plot with Q ₁ , Q ₂ , Q ₃ values marked on Positive skew	A1	
			(2)

January 2009 6689 Decision D1 Mark Scheme

Question Number	Scheme	Marks	
1 (a)	e.g. M L J H K T R I J H I K M L T R H J I K M L R T H I J K L M R T H I J K L M R T	M1 A1 A1ft A1ft A1cso	(5)
(b)	Sort complete.		
	1 st choice $\left[\frac{1+8}{2}\right] \rightarrow 5$ Lauren reject right	M1 A1	
	2^{nd} choice $\left\lfloor \frac{1+4}{2} \right\rfloor \rightarrow 3$ John reject right		
	3^{rd} choice $\left[\frac{1+2}{2}\right] \rightarrow 2$ Imogen reject right	Alft	
	4 th choice 1 Hannah reject List now empty so Hugo not in list	A1 ((4)
		[[9]
	 Notes: (a) 1M1: quick sort, pivots, p, chosen and two sublists one p. If choosing 1 pivot per iteration only M1 only. 1A1: first pass correct and next pivots chosen correctly/consistently. 2A1ft: second pass correct, next pivots correctly/consistently chosen. 3A1ft: third pass correct, next pivots correctly/consistently chosen. 4A1: all correct, cso. (b) 1M1: binary search, choosing pivot, rejecting half list. If using unsorted list, M0. Accept choice of K for M1 only. 1A1: first pass correct, pivot rejected. 3A1ft: second pass correct, pivot rejected. 		

Question Number	Scheme	Mark	s
4 (a)	Alternating path $B-3 = A-5$ change status $B = 3 - A = 5$	M1 A1	
	A = 5 $B = 3$ $C = 2$ $D = 1$ $E = 6$ F unmatched	A1	(3)
(b)	e.g. C is the only person able to do 2 and the only person able to do 4. Or D, E and F between them can only be allocated to 1 and 6.	B2, 1, C) (2)
(c)	Alternating path $F - 6 = E - 1 = D - 2 = C - 4$ change status $F = 6 - E = 1 - D = 2 - C = 4$	M1 A1	
	A = 5 $B = 3$ $C = 4$ $D = 2$ $E = 1$ $F = 6$	A1	(3)
			[8]
	 Notes: (a) 1M1: Path from B to 5. 1A1: Correct path including change status 2A1: CAO my matching, may be drawn but if so 5 lines only and clear. (b) 1B1: Close, a correct relevant, productive statement bod generous 2B1: A Good clear answer generous (c) 1M1: Path from F to 4. No ft. 1A1: Correct path penalise lack of change status once only 2A1: CAO may be drawn but if so 6 lines only and clear 		

Question Number	Scheme	Marl	ks
5 (a)	Odd vertices C, D, E, G $CD + EG = 17 + 19 = 36 \leftarrow$ CE + DG = 12 + 25 = 37 CG + DE = 28 + 13 = 41 Length = 543 + 36 = 579 (km)	B1 M1 A1 A1 A1ft	(5)
(b)	 CE (12) is the shortest So repeat CE (12) Start and finish at D and G Notes: (a) 1B1: cao (may be implicit) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: all correct 3A1ft: 543 + their least = a number. Condone lack of km (b) 1M1ft: Identifies their shortest from a choice of at least 2 rows. 1A1ft: indicates their intent to repeat shortest. 2A1ft: correct for their least. 	M1 A1ft A1ft	(3) [8]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA020941 January 2009

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH