Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

3300U20-1

MATHEMATICS UNIT 2: CALCULATOR-ALLOWED FOUNDATION TIER

TUESDAY, 20 JUNE 2017 – AFTERNOON

1 hour 30 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3·14 or use the π button on your calculator.

INFORMATION FOR CANDIDATES

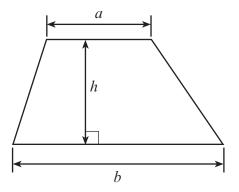
You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

In question **10**, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.


Question	Maximum Mark	Mark Awarded
1.	4	
2.	2	
3.	3	
4.	3	
5.	2	
6.	4	
7.	2	
8.	2	
9.	2	
10.	5	
11.	3	
12.	7	
13.	3	
14.	2	
15.	2	
16.	2	
17.	4	
18.	5	
19.	4	
20.	4	
Total	65	

For Examiner's use only

Formula List - Foundation Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

[4]

[2]

1. Fill in the missing numbers in the calculations below.

245 + = 1023

_ 263 = 642

46 × = 1610

÷ 15 = 43

2. Use either the symbol < or > to make each statement true.

3 12

0.25

–20 –15

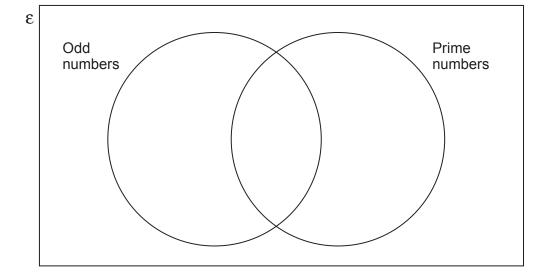
	(-)	(:)	la di a sa sa sa la la sa	dans a single of modifi	F		Examiner only
3.	(a)	(i)	In the space below, α Use the point \times as th			[1]	-
			Ose the point × as th	ie centre or your circ	ile.	ניו	
							
							
							
							 -
							' -
							_
				×			
							7
							
							-
		(ii)	What is the length of	the diameter of the	circle you have drawn?	[1]	-
		•••••					-
	(b)	Wha	t is the special name o	given to a triangle w	ith three equal sides?		-
	, ,	Circl	e the correct answer.		·	[1]	-
		Isosc	eles triangle	Tetrahedron	Scalene triangle		-
			Right-angled tria	angle	Equilateral triangle		-
			ragni anglod til	g!0	_qanatorar triangio		-
							-
							_

|-

	numbers are factors of 20. e three numbers is 24.		
vnat three numbers	did Matthew write down?		
Matthew's th	ree numbers are	, and	
(a) What is the ore	der of rotational symmetry of th	ne shape below?	
()	, , , , , , , , , , , , , , , , , , ,	·	
	Q <u>/</u>		
(b) Name a 4-side	ed shape with rotational symme	etry of order 4.	

Examine	9
only	

(a)	Find the value of $\frac{235 \times 20^2}{17}$.	
	Write your answer correct to the nearest 10.	
(b)		
	Write your answer correct to 2 decimal places.	
Find	the value of $8x + 3y$, when $x = 3$ and $y = -2$.	
	The value of $6x + 3y$, when $x = 3$ and $y = -2$.	

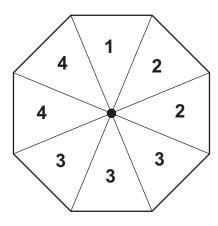

8.	Eira believes that 4 minutes 48 seconds is less than half of 9 minutes 18 seconds. Is Eira correct? You must show all your working.	[2]
		•••••

- The Venn diagram below is used for showing odd numbers and

 - prime numbers.

Place the numbers 1, 2, 3, 4 and 5 in the Venn diagram.

[2]



Turn over.

	8	
In this question, you will be accuracy in writing.	be assessed on the quality of your c	organisation, communication and
	Diagram not drawn to scale	
The perimeter of a square Calculate the area of the s	square.	[3 + 2 OCW]

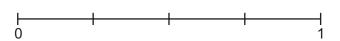
11. Seren has a fair 8-sided spinner. The sections of the spinner are numbered 1, 2, 2, 3, 3, 4, 4.

Which number is the spinner most likely to land on?

[1]

(b) Circle one term from the list below that describes the probability of the spinner landing on a 2.

impossible


unlikely

even chance

likely

certain

(c) On the probability scale below, mark with an arrow the probability of the spinner landing on a 3. [1]

(a)	Calculate 39	% of £576.				[2]			
(b)	Calculate $\frac{3}{7}$ of 100. Give your answer correct to the nearest whole number.								
(c)	How many q	uarters are there	e in 10?			[1]			
′d)	What fractio	n is equal to 50°	% of $\frac{1}{6}$?			[1]			
(e)	Circle the fra 21 35	ection that is a re 10 12	curring decimal. <u>17</u> 68	<u>15</u> 24	<u>51</u> 170	[1]			
	b) (c) (d)	b) Calculate $\frac{3}{7}$ of Give your and Give	b) Calculate $\frac{3}{7}$ of 100. Give your answer correct to to the distribution of the contract of the contra	Calculate $\frac{3}{7}$ of 100. Give your answer correct to the nearest whole How many quarters are there in 10? What fraction is equal to 50% of $\frac{1}{6}$? e) Circle the fraction that is a recurring decimal. $\frac{21}{35}$ $\frac{10}{12}$ $\frac{17}{68}$	b) Calculate $\frac{3}{7}$ of 100. Give your answer correct to the nearest whole number. c) How many quarters are there in 10? d) What fraction is equal to 50% of $\frac{1}{6}$? e) Circle the fraction that is a recurring decimal. $\frac{21}{35}$ $\frac{10}{12}$ $\frac{17}{68}$ $\frac{15}{24}$	b) Calculate $\frac{3}{7}$ of 100. Give your answer correct to the nearest whole number. c) How many quarters are there in 10? d) What fraction is equal to 50% of $\frac{1}{6}$? e) Circle the fraction that is a recurring decimal.			

13.	Circle either TRUE or FALSE for each of the following sta	atements.		[3]
	A triangle with one angle equal to 70° could be an equilateral triangle.	TRUE	FALSE	
	A triangle with one angle equal to 70° could be an isosceles triangle.	TRUE	FALSE	
	A triangle with one angle equal to 70° could be a right-angled triangle.	TRUE	FALSE	
	An isosceles triangle could have one of its angles equal to 105°.	TRUE	FALSE	
	A right-angled triangle could have one of its angles equal to 105°.	TRUE	FALSE	
		,		
11	Calculate the answer when,			
14.	'the largest prime number that is a factor of 28	21		
	is multiplied by)		
	'the smallest prime number that is factor of 15'			[2]

only

Examiner **15.** The diagram below shows a number machine. **MULTIPLY ADD** OUTPUT **INPUT** BY 3 7 Using the number machine, calculate: the OUTPUT when the INPUT is -2, [1] the INPUT when the OUTPUT is 36, [1] (b) Write down three integers, all less than 25, whoserange is 8, and mean is 13. [2] The three integers are and

 (a)	Write down the first three terms of the sequence whose n th term is given by $2n-5$.	
 (b)	The first three terms are $$, and $$. Write down an expression for the n th term of the following sequence.	[2]
	7, 11, 15, 19,	

18.	Α	dice	is	thrown	50	times.
-----	---	------	----	--------	----	--------

The number shown on the dice is recorded after each throw. The table below shows the results recorded.

Number shown on dice	1	2	3	4	5	6
Frequency	9	7	8	7	6	13

(a)	The relative frequency of throwing a 1 was calculated as $\frac{50}{50}$ = 0.18. What was the relative frequency of throwing a 6? Give your answer as a decimal.	[1]
(b)	The number 4 was thrown 7 times in the first 50 throws. Using this fact , calculate how many times you would expect a 4 to be thrown when dice is thrown 3000 times.	this
(c)	How many times would you expect a 4 to be thrown when a fair dice is thrown 3 times?	000

19. ABCDE is a regular pentagon with centre O.

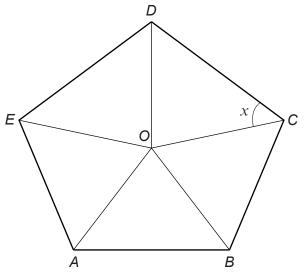


Diagram not drawn to scale

Calculate the size of angle x . You must show all your working.				

20. ABCF is a rectangle. CDEF is a trapezium. BD is a straight line.

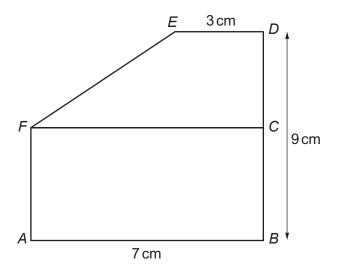


Diagram not drawn to scale

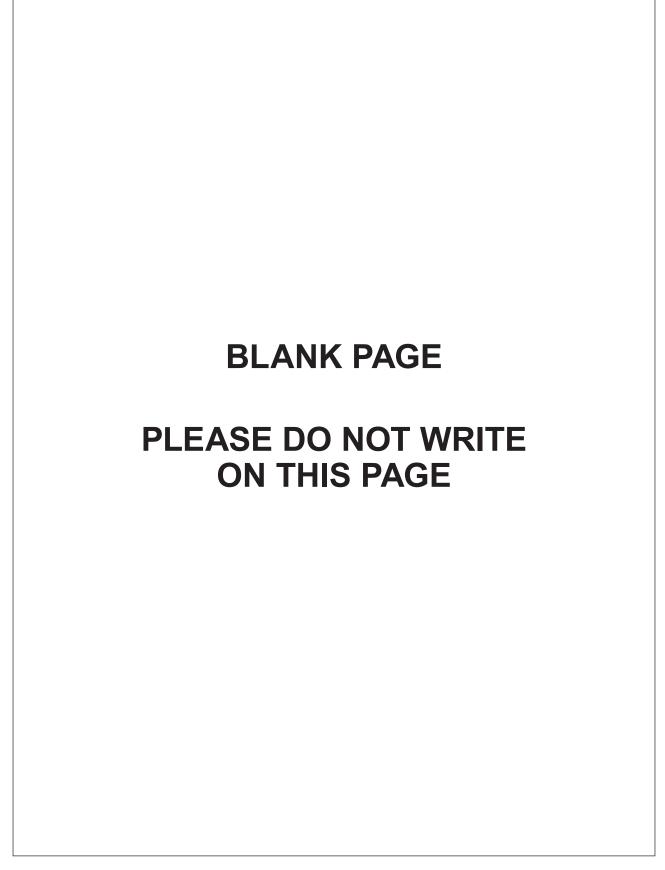
 $AB = 7 \,\mathrm{cm}$, $BD = 9 \,\mathrm{cm}$ and $DE = 3 \,\mathrm{cm}$.

The perimeter of rectangle ABCF is 24 cm.

Calculate the area of the trapezium CDEF.
You must show all your working.

[4]

END OF PAPER



Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
]

