

| 1. | The heights of a population of women are normally distributed with mean $\mu$ cm and standard deviation $\sigma$ cm. It is known that 30% of the women are taller than 172 cm and 5% are shorter than 154 cm. | Leav<br>blan |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | (a) Sketch a diagram to show the distribution of heights represented by this information. (3)                                                                                                                 |              |
|    | (b) Show that $\mu = 154 + 1.6449\sigma$ . (3)                                                                                                                                                                |              |
|    | (c) Obtain a second equation and hence find the value of $\mu$ and the value of $\sigma$ . (4)                                                                                                                |              |
|    | A woman is chosen at random from the population.                                                                                                                                                              |              |
|    | (d) Find the probability that she is taller than 160 cm. (3)                                                                                                                                                  |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |
|    |                                                                                                                                                                                                               |              |

|    |                                                                                                                                                                        | Leave |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2. | The lifetimes of bulbs used in a lamp are normally distributed. A company <i>X</i> sells bulbs with a mean lifetime of 850 hours and a standard deviation of 50 hours. |       |
|    | (a) Find the probability of a bulb, from company <i>X</i> , having a lifetime of less than 830 hours.                                                                  |       |
|    | (3)                                                                                                                                                                    |       |
|    | (b) In a box of 500 bulbs, from company <i>X</i> , find the expected number having a lifetime of less than 830 hours.                                                  |       |
|    | (2)                                                                                                                                                                    |       |
|    | A rival company <i>Y</i> sells bulbs with a mean lifetime of 860 hours and 20% of these bulbs have a lifetime of less than 818 hours.                                  |       |
|    | (c) Find the standard deviation of the lifetimes of bulbs from company <i>Y</i> . (4)                                                                                  |       |
|    | Both companies sell the bulbs for the same price.                                                                                                                      |       |
|    | (d) State which company you would recommend. Give reasons for your answer. (2)                                                                                         |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |
|    |                                                                                                                                                                        |       |



|    |                                                                                                                                 | Le:<br>bla |
|----|---------------------------------------------------------------------------------------------------------------------------------|------------|
| 3. | The distances travelled to work, $D$ km, by the employees at a large company are normall distributed with $D \sim N(30, 8^2)$ . | ly         |
|    | (a) Find the probability that a randomly selected employee has a journey to work of more than 20 km.                            |            |
|    | (3)                                                                                                                             | )          |
|    | (b) Find the upper quartile, $Q_3$ , of $D$ . (3)                                                                               | )          |
|    | (c) Write down the lower quartile, $Q_1$ , of $D$ . (1)                                                                         | )          |
|    | An outlier is defined as any value of $D$ such that $D < h$ or $D > k$ where                                                    |            |
|    | $h = Q_1 - 1.5 \times (Q_3 - Q_1)$ and $k = Q_3 + 1.5 \times (Q_3 - Q_1)$                                                       |            |
|    | (d) Find the value of $h$ and the value of $k$ . (2)                                                                            | )          |
|    | An employee is selected at random.                                                                                              |            |
|    | (e) Find the probability that the distance travelled to work by this employee is an outlier.                                    | ı          |
|    | (3)                                                                                                                             | )          |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 | -          |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 | -          |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |
|    |                                                                                                                                 |            |

24

|                                                                                          | :_1: ~ |  |  |
|------------------------------------------------------------------------------------------|--------|--|--|
| The random variable $X$ has a normal distribution with mean 30 and standard deviation 5. |        |  |  |
| (a) Find $P(X < 39)$ .                                                                   | (2)    |  |  |
|                                                                                          | (2)    |  |  |
| (b) Find the value of d such that $P(X < d) = 0.1151$                                    | (4)    |  |  |
|                                                                                          | (4)    |  |  |
| (c) Find the value of e such that $P(X > e) = 0.1151$                                    | (2)    |  |  |
|                                                                                          | (2)    |  |  |
| (d) Find $P(d < X < e)$ .                                                                | (2)    |  |  |
|                                                                                          | (2)    |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |
|                                                                                          |        |  |  |