GCSE MARKING SCHEME

MATHEMATICS - LINEAR
NOVEMBER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2014 examination in GCSE MATHEMATICS - LINEAR. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PAPER 1 - FOUNDATION TIER

GCSE Mathematics - Linear Paper 1 (Non calculator) Foundation Tier November 2014	Marks	Final Mark Scheme Comments
1. (a) (i) 52004 (ii) six million (and) seven hundred thousand (b) (i) 36 and 44 (ii) 37 (iii) 56 (iv) 81 (c) (i) 79600 (ii) 80000 (d) $1,2,3,4,6,12$ (e) $15 / 2.97$ OR $15 / 3$ $=5$	B1 B2 M1 A1 12	Accept six point seven million Allow $37+46$ etc as long as 37 seen B1 for at least 4 correct factors with at most 1 incorrect number. Ignore repeated numbers Accept answers written in the form $1 \times 12,2 \times 6,3 \times 4$ Using a repeated addition method (or multiplication) only gets M1 if it shows trying to get the most for $£ 15$. $£ 14.85$ gets M1 A0. Note: We condone $3 / 15=5$ and award M1,A1. If their answer is incorrect, such as $3 / 15=4$ then award M0,A0.
2. (a) 7 hundred(s) OR 700 OR hundred(s) (b) 23 OR 29 (c) (Disha spends) (£) 5.60 OR 560 (p) (Number of pineapples =) 560/80 $=7$ (pineapples) Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of ${ }^{‘}=’, £, p$) QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	B1 B1 B1 M1 A1 QWC 2	Do not accept 100 QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar
3. (a) Delivery charge $=250-5 \times 40$ Delivery charge $=(£) 50$ (b) Number of days $=(350-30) / 40$ $=8$ (days)	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \end{gathered}$	Correctly substituted shown by correct attempt to evaluate. For correct substitution with subtraction Allow embedded references to the correct answer.

GCSE Mathematics - Linear Paper 1 (Non calculator) Foundation Tier November 2014	Marks	Final Mark Scheme Comments
4. (a)	B1	Penalise $\mathbf{- 1}$ once only for contiguous or fragmented symbols
E		

GCSE Mathematics - Linear Paper 1 (Non calculator) Foundation Tier November 2014	Marks	Final Mark Scheme Comments
9. (a) $x+3 y$ (b) $\begin{aligned} & 5 \mathrm{t}=15 \\ & (\mathrm{t}=) 3 \end{aligned}$ (c) 4	$\begin{gathered} \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { B2 } \\ 6 \end{gathered}$	B1 for the x OR (+) 3y F.T from one error. Accept embedded answers. $B 1$ for the -6 OR (+)10. $\underline{\mathbf{- 6 p}+\mathbf{1 0 q} \text { gets } \mathbf{B 0} . ~}$
10. Use Overlay Correct use of the scale on any line OR First correct line Method for finding intersection of the other 2 sides Completed drawing	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ 3 \\ \hline \end{gathered}$	For any 1 correct line drawn OR All 3sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm corectly calculated. Arcs must be shown. Allow B1, SC1 if their triangle is within the tolerances of the overlay but no arcs shown.
11. (a) (0). $13+(0) .14+(0) .04$ (0). 31 OR equivalent, e.g. 31% (b) (0). 31 of 200 $=62$ (c) $200 \times 70 \mathrm{p}-62 \times £ 1.50 \quad(=140-93)$ Profit $=(\mathfrak{f}) 47$ OR $4700(p)$	M1 A1 M1 A1 M1 A1 6	
12. (a) $\begin{aligned} & \angle \mathrm{ABC}=46\left(^{\circ}\right) \\ & \mathrm{x}=180-46\left({ }^{\circ}\right)-59\left(^{\circ}\right) \text { OR } 180-105\left(^{\circ}\right) \\ & \mathrm{x}=75\left(^{\circ}\right) \end{aligned}$ (b) Interior angle $=55$ $\begin{aligned} & 360-117-141-55 \text { OR } 360-313 \\ & y=47\left({ }^{\circ}\right) \end{aligned}$	B1 M1 A1 B1 M1 A1 6	Look at diagram also 55 on its own gets this B1, even as $\mathrm{y}=55$. Angle sum of quadrilateral. Note that $360-117-141$ -$(180-125)$ is equivalent to $180+125-(117+141)$ For finding $4^{\text {th }}$ angle. Also look in their diagram. F.T. 'their 55'
13. (a) 11:47 (b) 14:19-13:25 $=54$ minutes	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 3 \\ \hline \end{gathered}$	For the intent to subtract 13:25 from 14:19
14. $2,2,2,2,3,5 \quad 2^{4} \times 3 \times 5$	M1 A1 B1 3	For a method that produces 2 prime factors from the set $\{2,2,2,2,3,5\}$ before their second error. If their $2^{\text {nd }}$ prime and $2^{\text {nd }}$ error occur at the same 'level' then allow M1. C.A.O. for the six correct factors. (Ignore 1 s). F.T. their answer if at least one index form used with at least a square. Ignore prime number requirement for this B mark. Use of brackets $\left(2^{4}\right)(3)(5)$ OR dot $2^{4} .3 .5$ gets the B1. The inclusion of any 1 s as factors, for example, $2^{4} \times 3 \times 1 \times 5$ in their index form gets B0. Note that $2^{4} \times 3^{1} \times 5^{1}$ gets B1.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Linear \\
Paper 1 (Non calculator) \\
Foundation Tier November 2014
\end{tabular} \& Marks \& Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
15.(a) Reflection (in) \(y=1\) OR rotation \(180^{\circ}\) about \((-4,1)\) OR rotation \(180^{\circ}\) about origin or \((0,0)\) followed by translation \(\binom{-8}{2}\) OR or enlargement \(\mathbf{- 1}\) with centre \((\mathbf{- 4 , 1})\) OR equivalent . \\
(b) Correct rotation \\
B1 \\
H1 \\
(c) Correct enlargement
\end{tabular} \& E2

(b)
B2

B2

6 \& | Do not accept informal or imprecise language such as 'flipped' or 'mirror' or 'translation' for E2 |
| :--- |
| E1 for 'rotation' or ('turn around') 180° with $(-4,1)$ indicated, OR 'reflection' and an attempt to indicate a horizontal line (accept incorrect lines) or reflection in $\mathrm{x}=1$, OR for 'flipped in $\mathrm{y}=1$ ' or 'mirror in $\mathrm{y}=1$ ' but do not allow 'flipped' or 'mirror' with $\mathrm{y}=1$ drawn but not described, OR E1 for rotation 'about $(0,0)$ ' or ' 180° ' and translate $\binom{-8}{2}$. |
| B1 for anticlockwise 90° about the origin (2nd diagram) OR 90° clockwise about origin of triangle B (3rd diagram) |

\hline | 16.(a) Use of distance /time (35/2.5) $\begin{gathered} 35 / 2.5 \\ 14(\mathrm{mph}) \end{gathered}$ |
| :--- |
| (b) $10(\mathrm{~kg})$ or $\mathbf{1 1}(\mathrm{kg})$ |
| (c) (In Glasgow time flight arrives San Francisco at) 13:40 add 4 h 25 min add 13 h (7:05 on Thursday/next day) (To find San Francisco time) subtract 8 h $\begin{array}{cl} \text { Day Wednesday } & \text { Time 23(:)05 OR 11:05 pm } \\ & \text { OR 11:05 Wednesday night } \\ & \text { OR equivalent } \end{array}$ | \& | B1 |
| :---: |
| B1 |
| B1 |
| |
| B1 |
| M1 |
| M1 |
| A1 | \& | For example, accept $35 / 2.3$ (0) or 35/150 |
| :--- |
| An answer of $15.2 \ldots$. implies this first B1 |
| C.A.O. |
| Alternative: $70 \div 5$ B2 then $14(\mathrm{mph}) \mathrm{B1}$, or $35 / 5=7$ with $7+7$ B2, then $14(\mathrm{mph})$ B1 |
| (35/7 is insufficient to convince distance/time) |
| All times and periods and attempt addition forward May be in stages. Accept 4.25 as indication of 4 hr 25 mins Intention 8 hours back from their intention of addition of 4 h 25 min or 13 h to $13: 40$ |
| CAO |
| An answer of 23:05 without stating Wednesday is M1, M1, A0. Allow 23(:)05 pm, but do not allow 23(:)05 am Accept 11(:)05 pm. Allow 11(:)05 Wednesday night |

\hline | 17. (a) $\begin{aligned} & \frac{(\mathbf{5 x}-\mathbf{1 2}=)}{5 x-3 x=18+12} 3 x+18 \\ & x=15 \end{aligned}$ |
| :--- |
| (b) $9 x<72$ or $x<72 / 9$ OR $9 x<77-5$ $x<8$ | \& \[

$$
\begin{gathered}
7 \\
\hline \text { B1 } \\
\text { B1 } \\
\text { B1 } \\
\\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | For clearing the bracket correctly. FT until $2^{\text {nd }}$ error. |
| :--- |
| If FT leads to a whole number, answer must be given as whole number, otherwise allow as an improper fraction |
| A0 for a final answer ' $x=7$ ', however ignore continuation to state $x=7,6,5, \ldots$ with $x<8$ seen award A1 |
| No marks for use of " $=$ " throughout, unless finally replaced to give $\mathrm{x}<8$ then award M1 A1. |
| SC1 for $x<82 / 9$ ISW |

\hline H2c\&d \& 5 \&

\hline | 18. Area triangle $\mathrm{ADC} 1 / 2 \times 12 \times \mathrm{AD}=60$ or equivalent $\mathrm{AD}=10(\mathrm{~cm})$ |
| :--- |
| Area triangle $\mathrm{XBC}=1 / 2 \times 2.5 \times \mathrm{AD}$ $12.5\left(\mathrm{~cm}^{2}\right)$ | \& M1

A1
M1
A1

4 \& | FT 'their AD' and/or FT consistent use of 'their area formula'. |
| :--- |
| Alternative: |

\hline
\end{tabular}

PAPER 1 - HIGHER TIER

GCSE Mathematics - Linear Paper 1 Higher Tier November 2014	Marks	Final Mark Scheme Comments
4. (a) Use of distance /time (35/2.5) $\begin{array}{r} \\ \\ 35 / 2.5 \\ \\ \\ 14(\mathrm{mph})\end{array}$	B1 B1 B1	For example, accept 35/2.3(0) or 35/150 An answer of $15.2 \ldots$... implies this first B1 CAO Alternative: $70 \div 5$ B2 then 14 (mph) B1, or $35 / 5=7$ with $7+7$ B2, then 14 (mph) B1 (35/7 is insufficient to convince distance/time)
(b) $10(\mathrm{~kg})$ or $11(\mathrm{~kg})$	B1	
(c) (In Glasgow time flight arrives San Francisco at) 13:40 add 4 h 25 min add 13 h (7:05 on Thursday/next day) (To find San Francisco time) subtract 8 h	M1 M1	All times and periods and attempt addition forward May be in stages. Accept 4.25 as indication of 4 hr 25 mins Intention 8 hours back from their intention of addition of 4 h 25 min or 13 h to $13: 40$
23(:)05 on Wednesday (same day) Look for: - spelling	A1	CAO An answer of 23:05 without stating Wednesday is M1, M1, A0. Allow 23(:)05 pm, but do not allow 23(:)05 am Accept $11(:) 05 \mathrm{pm}$. Allow 11(:)05 Wednesday night
time zone Glasgow or San Francisco - the use of notation and units	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
QWC2: Candidates will be expected to - present work clearly, maybe with diagrams and words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
QWC1: Candidates will be expected to - present work clearly, maybe with diagrams and words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	9	QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
5.(a) CD length is 10 cm ($\pm 2 \mathrm{~mm}$) and attached to DE at D	B1	
Arcs to show construction of 60° and bisection arcs to show 30° constructed, tolerance $\pm 2^{\circ}$	B2	B1 for the appropriate arcs and construction of $60^{\circ}\left(\pm 2^{\circ}\right)$
Accurate measure of their DE ($\pm 2 \mathrm{~mm}$) with intention $\times 4$	M1	Approximately 6 cm
cm	A1	Units must be given. FT their $\mathrm{DE} \times 4$ evaluated correctly Approximately 24 cm
(b) Measures either <GFE $\left(107^{\circ}\right)$ and $<\mathrm{FGH}\left(73^{\circ}\right)$ or $\angle \mathrm{FEH}\left(102^{\circ}\right)$ and $\angle \mathrm{GHE}\left(78^{\circ}\right)$ or an appropriate pair of alternate angles, to accuracy $\pm 2^{\circ}$	B1	Measures alternate or corresponding angles for a straight line intersecting with a pair of parallel lines
Conclusion that it is safe with reason based on parallel lines alternate, (corresponding) or allied angle facts	E1	STRICT FT for the conclusion appropriate for their angles, i.e. sum 180° conclusion would be parallel, otherwise not Do not accept informal terminology e.g. 'z angles'. A statement of 180° is insufficient.
	7	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Linear \\
Paper 1 Higher Tier November 2014
\end{tabular} \& Marks \& Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
10. (a) 300 (callers) \\
(b) \((40 \%\) of \(800=) 320\) (callers) (reading to give) 21 (seconds) (Difference) 4 (seconds) \\
(c) First Call and 5 (seconds) \\
(d)
\end{tabular} \& B1
M1
M1
A1

B2 \& | FT for their 40% of 800 . |
| :--- |
| CAO |
| M1 \& SC1 for using First Call with an answer of 9 seconds |
| Accept unsupported correct response |
| B1 for sight of medians Help 4U 25seconds or First Call 20 seconds or unsupported 5 seconds alone |
| Do not accept from incorrect working, e.g. $30-25=5$ is B0 |
| If answers are reversed in (d) due to misread of labels, then MR-1 and FT accordingly |

\hline | First Call 40 - 10 OR Help 4U 35-13.5 (± 0.5) First Call 30 (seconds) |
| :--- |
| Help 4U 21.5 (± 0.5 seconds) | \& M1

A1
A1 \& For the intention to calculate UQ- LQ

\hline (e) Choice, First Call, with a reason based on correct interpretation of the data, e.g.'The median is lower for First Call', 'All the calls to First Call were answered within 50 seconds, whereas there were 50 calls to Help4U that took over 50 seconds to be answered', 'First Call had answered more calls than Help4U after 10, 20 and 50 seconds, the same number of calls answered after 30 (and 60) seconds, but fewer calls answered after 40 seconds', 'First Call were faster overall' \& E1 \& | Do not accept a reason based solely on the interquartile range. |
| :--- |
| Do not accept 'First Call were quicker’ FT for their appropriate choice with interpretation of their previous median answer. |

\hline | 11. |
| :--- |
| (Sight of $\angle \mathrm{ABC}=$) 3 x OR |
| Sight of $\angle O A C$ or $\angle O C A$ as $1 / 2(180-6 x)$ or equivalent |
| Sight $<$ CAY $=3 \mathrm{x}$ | \& B1

B1 \& | Any angles may be indicated on the diagram |
| :--- |
| Allow 6x/2 |
| Accept intention (without brackets) |
| Do not accept ambiguous $3 x$. Must be simplified to $3 x$. |
| An unlabelled answer of $3 x$ is awarded first B1 only as b.o.d. |
| $\mathrm{FT}<\mathrm{CAY}=$ 'their $<\mathrm{ABC}$ ' provided $\neq 6 \mathrm{x}$ |

\hline Reasons, e.g. ' angle at centre is twice the angle at the circumference AND alternate segment theorem', or 'angles in triangle 180° AND radius meets tangent at 90° \& | E1 |
| :---: |
| 3 | \&

\hline | 12.(a) $5 \sqrt{ } 2$ |
| :--- |
| (b) Sight of 40 and 20 broken down into factors, e.g. |
| $(\sqrt{ }) 4 \times 10$ and $(\sqrt{ }) 4 \times 5$, or $(\sqrt{ }) 2 \times 2 \times 2 \times 5$ and $(\sqrt{ }) 2 \times 2 \times 5$ $20 \sqrt{2}$ |
| (c) $6+4 \sqrt{ } 5-3 \sqrt{5}-10$ in this simplified form $-4+\sqrt{5}$ OR $\sqrt{5}-4$ | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\\
\text { B2 } \\
\text { B2 } \\
\text { B1 } \\
7
\end{gathered}
$$

\] \& | OR $\sqrt{ } 40$ written as $\sqrt{ } 2 \times \sqrt{ } 20$ |
| :--- |
| Allow $\sqrt{ } 800$ for B1 |
| B1 for correct but not fully simplified e.g. $4 \sqrt{ } 50$ |
| B1 for any 3 of the 4 terms correct |
| CAO |

\hline 13.(a)Reflection in the x -axis $\quad(0,4)$ \& M1 \& Accept 4 indicated correctly on the y -axis

\hline | (b) Horizontal translation |
| :--- |
| Correct translation with $(3,0)$ and $(6,0)$ indicated on the x -axis | \& B1

B2 \& | Any horizontal translation without including any other transformation |
| :--- |
| Accept indication of 3 and 6 on the x -axis with the correct translation |
| B1 for a horizontal translation with $1((1,0)$)and $4((4,0))$ indicated on the x -axis as intersections or translation to show $\mathrm{y}=\mathrm{g}(\mathrm{x})$ with $(-1,0)$ and $(2,0)$ indicated or correct translation but only one of the values 3 and 6 indicated. |

\hline 14. $(4 \mathrm{x}+3)(3 \mathrm{x}+1)-(2 \mathrm{x}-1)(6 \mathrm{x}-5)$ as a numerator Sight of $12 x^{2}+9 x+4 x+3$ AND

\[
$$
\begin{aligned}
& \begin{array}{l}
12 x^{2}-6 x-10 x+5 \text { or } \\
\underset{29 x-2}{ }-12 x^{2}+6 x+10 x-5 \\
(2 x-1)(3 x+1)
\end{array}
\end{aligned}
$$

\] \& | B1 M2 |
| :--- |
| A1 |
| A1 |
| 5 | \& | M1 for either pair of brackets expanded correctly |
| :--- |
| FT provided M1 awarded CAO. Do not ignore further working |

\hline
\end{tabular}

GCSE Mathematics - Linear Paper 1 Higher Tier November 2014	Marks	Final Mark Scheme Comments
15. Sketch of sine curve, from the origin clearly showing the symmetry 0° to 180° or to 360°	M2	Ignore missing y-values. M1 for sketch of sine curve with no indication of any values or symmetry. If y-values are given incorrectly but sketch otherwise correct, then award M1 Allow from M1, obviously M0 leads to A0. Allow any unambiguous indication of $44^{\circ} \& 136^{\circ}$, for example unlabelled if given uniquely
Bethan is correct AND $44^{\circ} \& 136^{\circ}$ correctly indicated on the sketch	A1	A

PAPER 2 - FOUNDATION TIER

GCSE Mathematics - Linear Paper 2 (Calculator allowed) Foundation Tier November 2014	Marks	Final Mark Scheme Comments
	$\begin{aligned} & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	(£) 29.81 implies B4. F.T. if at least B1 awarded. FT their total $\text { -(£) } 10.19 \text { gets M1, A0 }$
	$\begin{gathered} \text { B1 } \\ 4 \end{gathered}$	
3. (a) Evidence of square counting $57-64$ inclusive (b) (i) (ii) (c) (i) 4 (ii) 2	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { B2 } \\ \\ \\ \text { B2 } \\ 6 \\ \hline \end{gathered}$	B1 for each Lines must be at least drawn within the shapes. B1 for each
4. (a) (i) cylinder (ii) cone (b) (i) tangent (ii) radius (c) Perpendicular	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not accept 'circular prism'. Allow from right of the ' p ' in passes' to the left of the ' r ' in 'through' inclusive. Welsh: from the right of ' n ' in 'mynd' to the left of 'B' in 'AB'
(d) Obtuse (Aflem) (e) 12 cm^{3}	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { U1 } \\ 8 \end{gathered}$	Independent
5. (a) impossible (b) unlikely (c) (an) even(s) (chance)	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 3 \end{gathered}$	
6. (a) Value -50 ± 2 (m) (b) Value -70 ± 2 (m) (c) (i) 70 (m) (ii) Their (a) - their (b) OR $\mathbf{2 0} \pm \mathbf{2}(\mathbf{m})$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	Units not required, but penalise incorrect units -1 once only. $\begin{aligned} & -70 \text { gets } B 0 \text {. } \\ & \hline \text { Difference is positive. } \mathbf{- 2 0} \text { gets } B 0 . \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Linear \\
Paper 2 (Calculator allowed) \\
Foundation Tier November 2014
\end{tabular} \& Marks \& \multicolumn{4}{|c|}{FINAL MARK SCHEME Comments} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 10. (a) } 1550 \times 0.84 \\
\& =(£) 1302
\end{aligned}
\] \\
(b) 798/0.84
\[
=950 \text { (euros) }
\]
\end{tabular} \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
4
\end{gathered}
\] \& \multicolumn{2}{|l|}{£s not required but A0 for euros. euros not required but A0 for \(£ \mathrm{~s}\).} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \begin{array}{l}
\text { Alternative method } \\
\underline{1.19} \in=£ 1 \\
\mathbf{1 5 5 0} \\
1.19 \\
\text { M1 } \\
=1302.52 \\
\text { If not } 1302
\end{array} \\
\& \hline
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
11. 3 or 4 angles correct and all 4 sectors correctly labelled. \\
3 or 4 angles correct, labels not fully correct. \\
2 angles correct and these 2 sectors correctly labelled. \\
2 angles correct and these 2 sectors not corr. labelled \\
1 angle correct and correctly labelled. \\
OR \\
If 0 OR 1 for their diagram or no diagram, \\
360/240 \\
Angles are \(150^{\circ}, 96^{\circ}, 60^{\circ}\) and \(54^{\circ}\)
\end{tabular} \& B4

B3
B3
B2
B1
OR

M1

A1 \& \multicolumn{4}{|l|}{| Use the overlay and allow $\pm 2^{\circ}$. |
| :--- |
| Correct labels (Letter/word NOT the frequency OR angle). |
| Accept labels in the form of a key. |
| If B0 OR B1 scored for the diagram, check the angles and the method to see if the M1 and the A1 can be awarded instead of B1. |
| 1 is $1 \frac{1}{2} 2^{\circ}$ gets the M1. |
| If only B 1 is scored for the diagram, and all the angles given correctly, then cancel the B1 and award M1, A1 for 2 marks. OR SC 1 for all percentages: $41 \cdot 7,26 \cdot 7,16 \cdot 7,15 \mathrm{Or}$ rounded OR truncated. |}

\hline $$
\begin{aligned}
& 12 . \quad 1 / 7+4 / 7=5 / 7 \\
& 2 / 7=30 \\
& 1 / 7=15 \\
& \text { No. of girls }=105
\end{aligned}
$$ \& B1

B1
B1
B1

4 \& | F.T. 'their 5/7' |
| :--- |
| F.T. |
| F.T. | \& \[

$$
\begin{aligned}
& \frac{\underline{\text { Decimals }}}{.14+.57=.71} \\
& \frac{.29=30}{\frac{30}{.29}} \\
& =103.4
\end{aligned}
$$

\] \& | B1 |
| :---: |
| B1 |
| B1 |
| |
| B1 |
| 4 | \& | Percentages $14 \%+57 \%=71 \%$ |
| :--- |
| etc as for |
| decimals. |
| If not 105 then |
| B0. |

\hline $$
\begin{gathered}
\hline 13 . \quad 1364 \\
181.41(2) \\
9.07(\ldots .) \\
190.48(26) \\
211.63(26)
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\hline
\end{gathered}
$$

\] \& \multicolumn{4}{|l|}{| C.A.O. |
| :--- |
| F.T. |
| F.T. |
| F.T. |
| F.T. Final answer must be 2 decimal places |}

\hline | 14. (a) All points plotted correctly |
| :--- |
| (b) $(16+32+40+20+34+32+44+6) / 8$ |
| Line of best fit through mean point, (32, 'their 28 ') | \& B2

M1

A1

B2 \& \multicolumn{4}{|l|}{| B1 for 5 correct, or reverse correct for 7 or 8 points For intention to add y-values and divide by 8 $224 / 8$. Allow slip in y-values used CAO. Accept unsupported 28 Only award B2 provided at least M1 previously awarded Tolerance within half square if mean point plotted, otherwise intention must be clear. |
| :--- |
| FT 'their 28 ' provided M1 awarded and their line of best fit has an appropriate skew (but may not have points above and below) |
| B1 for a straight line of best fit, with points above and below, OR for straight line of best fit through the mean point but skewed |
| (If M0, A0 maximum possible is B1) |}

\hline | (c) Positive |
| :--- |
| (d) From their line of best fit (reading to 1 small square) $\underline{\mathbf{O R}}$ y in the range 21 to 22 inclusive $\overline{\mathrm{H} 2}$ | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
8
\end{gathered}
$$
\] \& \multicolumn{4}{|l|}{FT from straight lines or curves.}

\hline $$
\begin{aligned}
& \text { 15. (a) } 36 \div 4 \times 3 \\
& =27 \text { (inches) } \\
& \text { (b) } \mathrm{s}^{2}=36^{2}+27^{2} \\
& \mathrm{~s}^{2}=1296+729=2025 \\
& \mathrm{~s}=45 \text { (inches) } \text { Mark final answer. }
\end{aligned}
$$ \& M1

A1
M1
A1
A1

5 \& \multicolumn{4}{|l|}{| F.T. $\mathrm{s}^{2}=36^{2}+(\text { their }(\mathrm{a}))^{2}$ |
| :--- |
| Penalise -1 once only for incorrect units Unsupported 45 gets all 3 marks. |}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline GCSE Mathematics - Linear Paper 2 (Calculator allowed) Foundation Tier November 2014 \& Marks \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
16. \\
Difference between length and height = Length of one small square \(=4\)
\[
\begin{aligned}
\& \text { Length of large square }=(26-4) / 2 \\
\& =11(\mathrm{~cm})
\end{aligned}
\] \\
OR \(15-\mathbf{4}=\mathbf{1 1}\) OR \((30-8) / 2=11\)
\end{tabular} \& S1

M1
A1

3 \& | Also look at their diagram |
| :--- |
| This is the key step for solving the problem |
| Must signify that 4 is the length of the SMALL square. |
| This could be implied by using the ' 4 ' in their further working. |
| F.T. 'their 4' if it is clearly 'their length of a small square'. |
| Watch out for embedded answers, e.g. $11+4+11=26$ OR $11+4+11+4=30$. |
| Unsupported 11 gets all 3 marks. |

\hline | 17. Idea that exterior angle sum is 360° |
| :--- |
| Idea to sum angles, sight of $3 x+2 x+x+38+34$ $(=6 x+72)$ |
| Equate (their) sum of angles and 360° $x^{\circ}=48\left(^{\circ}\right)$ | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 | \& | Sight of (360-72=)288(${ }^{\circ}$) implies idea of 360° |
| :--- |
| Allow if implied or given with an incorrect equation, e.g. |
| ${ }^{\prime} 6 x+72=0$ ', or ' $3 x+2 x+x=540-34-38$ ', or ' $3 x+2 x+x=$ 468 ', accept with 'any multiple of 180 '- 72 provided >0 (e.g. 108, 288, 468, 648, 828, 1008, ...) |
| C.A.O. Ignore ${ }^{\circ}$ |
| Award B4 for a correct answer, 48 |
| Interior sum method: |
| Interior angles 180-3x, 180-2x, 180-x, 180-38 \& 180-34 |
| AND Sum interior angles ($3 \times 180=$) $540\left({ }^{\circ}\right)$ |
| (or B1 for sight of all the interior angle) $\begin{aligned} & 180-3 x+180-2 x+180-x+180-38+180-34=540 \\ & x\left({ }^{\circ}\right)=48\left({ }^{\circ}\right) \end{aligned}$ |

\hline H4 \& 4 \&

\hline 18. (a) $2(3 \mathrm{x}-4)$ \& B1 \&

\hline | (b) $3 \times 40^{2}-25$ 4775 |
| :--- |
| (c) $12 n-5$ OR equivalent | \& | M1 |
| :--- |
| A1 B2 | \& | Must be intention $3 \times 40 \times 40$, not for $(3 \times 40)^{2}$ |
| :--- |
| Allow, e.g. ' 3×40 squared -25 ', provided not contradicted by further incorrect interpretation in a calculation |
| Ignore ' $n=$ ' throughout (c) |
| Accept unsimplified form._ B1 for 12n |

\hline Only (b) H6(a) \& (c) 6(b)(i) \& 5 \&

\hline | 19. One correct evaluation, $2 \leq x \leq 3$ |
| :--- |
| 2 correct evaluations, $2.25 \leq x \leq 2.4$, one either side of 0 | \& B1

B1 \& | x | $x^{3}-x-10$ | | |
| :--- | :--- | :--- | :--- |
| 2 | -4 | | |
| 2.1 | -2.839 | | |
| 2.2 | -1.552 | | |
| | | $\mathbf{2 . 2 5}$ | $\mathbf{- 0 . 8 5 9 3 7 5}$ |
| $\mathbf{2 . 3}$ | $\mathbf{- 0 . 1 3 3}$ | | |

\hline 2 correct evaluations, $2.25 \leq x \leq 2.35$, one either side of 0

\[
2.3

\] \& M1 \& | 2.31 | 0.016391 |
| :--- | :--- |
| 2.32 | 0.167168 |
| 2.33 | 0.319337 |
| 2.34 | 0.472904 |

\hline No calculations shown: accept "too high", "> ", etc. \& A1 \& | | | $\mathbf{2 . 3 5}$ | $\mathbf{0 . 6 2 7 8 7 5}$ |
| :---: | :--- | :--- | :--- |
| | | 2.36 | 0.784256 |
| $\mathbf{2 . 4}$ | $\mathbf{1 . 4 2 4}$ | | |
| 2.5 | 3.125 | | |
| 2.6 | 4.976 | | |
| 2.7 | 6.983 | | |
| 2.8 | 9.152 | | |
| 2.9 | 11.489 | | |
| 3 | 14 | | |
| An unsupported answer of ' 2.3 ' is awarded SC2 | | | |

\hline H7 \& 4 \&

\hline
\end{tabular}

PAPER 2 - HIGHER TIER

GCSE Mathematics - Linear Paper 2 Higher Tier November 2014	Marks	Final Mark Scheme Comments
1.(a) Correct grouped frequency diagram (b) $15<\mathrm{x} \leq 20(\mathrm{~kg})$	B2	B1 for 3 correct bars, OR for translated grouped frequency diagram horizontally by one small square. BO if both grouped frequency diagram and frequency polygon given Accept indication of the group, e.g. ' 15 to 20 '
2.(a) All points plotted correctly	B2	B1 for 5 correct, or reverse correct for 7 or 8 points
(b) $(16+32+40+20+34+32+44+6) / 8$	M1	For intention to add y-values and divide by 8 224/8. Allow slip in y-values used
Lin 28	A1	CAO. Accept unsupported 28
Line of best fit through mean point, (32, 'their 28')	B2	Only award B2 provided at least M1 previously awarded Tolerance within half square if mean point plotted, otherwise intention must be clear FT 'their 28 ' provided M1 awarded and their line of best fit has an appropriate skew (but may not have points above and below) B1 for a straight line of best fit, with points above and below, OR for straight line of best fit through the mean point but skewed (If M0, A0 maximum possible is B1)
(c) Positive	B1	
(d) From their line of best fit (reading to 1 small square)	B1	FT from straight lines or curves.

GCSE Mathematics - Linear Paper 2 Higher Tier November 2014	Marks	Final Mark Scheme Comments
3. (Volume of sitting room) $2.4 \times 8 \times 12 \quad\left(=230.4 \mathrm{~m}^{3}\right)$	M1	
(Number of watts is 230.4) $\times 50$	M1	FT 'their volume', which must have been calculated by using at least two of the dimensions $2.4 \mathrm{~m}, 8 \mathrm{~m}$ and 12 m
11520(watts)	A1	CAO
(Window area is $1.7 \times 1.8=$) $3.06\left(\mathrm{~m}^{2}\right)$	B1	Allow 3.1 or ' >3 ' from correct working
(As window area is greater than $3 \mathrm{~m}^{2}$ need to increase the number of watts by $11 \%) 11520 \times 1.11$ or equivalent, e.g. $11520+11520 \times 11 \div 100$	M1	FT provided 'their calculation of 1.7×1.8 ' >3 FT 'their 11520 ' $\times 1.11$ provided at least M1 previously awarded
(Total number of watts is) 12787	A1	FT 'their 11520 ' $\times 1.11$ correctly evaluated
(Number of British thermal units is 12787.2×3.412) 43629.9264 (Btu) OR	A1	CAO, by accepting only answers in the range 43629 (Btu) to 43630(Btu)
(Conversion of radiator Btu to watts for both standard and small) (Standard $45000 \div 3.412=$) 13188.7 (...watts) AND $\quad($ Small $40000 \div 3.412=) 11723(.3 \ldots$ watts)		CAO, by accepting also 13188 (watts) or 13189 (watts)
		(Use of 3.142 (gives 40177(.3824 Btu), or $45000 \div 3.142=14322.08 .$. (watts) and $40000 \div 3.142=12730.74 . .($ watts $)$ is recorded $M R-1, A 1$)
Conclusion, (need to buy), e.g. 'Standard (radiator) as slightly larger (could be turned down)', or 'Standard as others would give far too much heat or not enough', or 'Small as the next size too hot, rarely have a radiator on full', or 'Small as standard may overheat the room', or 'Small as just slightly less', or 'Standard as just above requirement'	E1	Depends on first 2 method marks and working with Btu in the range 32500 B tu to 50000 Btu or with watts in the range
		9525 watts to 14655 watts (see also * below). FT conclusion as appropriate for their Btu or watts.
		Accept an answer of 'Small' with an appropriately clear and suitable reason, although it is 'Standard' that meets all the criteria.
		Do not accept insufficient reasons, e.g. 'standard should fine', 'small is okay', without saying why it is 'fine' or 'okay'
		Alternative:
		(Volume of sitting room) $2.4 \times 8 \times 12$ (Window area is $1.7 \times 1.8=) 3.06\left(\mathrm{~m}^{2}\right)$$\left(=230.4 \mathrm{~m}^{3}\right) \quad \begin{gathered}\text { M1 } \\ \text { B1 }\end{gathered}$
		$\begin{aligned} \text { (Watts per } m^{3} \text { required) } 50 \times 1.11 \text { (or equivalent) } & \text { M1 } \\ 55.5\left(\text { watts per } m^{3} \text { required) }\right. & \text { Al }\end{aligned}$
		$\begin{gathered} \text { (Standard) }(45000 \div 3.412) \div 230.4 \\ \quad=13188.7(\ldots \text { watts }) \div 230.4\left(\mathrm{~m}^{3}\right) \text { OR } \\ (\text { Small })(40000 \div 3.412) \div 230.4 \end{gathered}$
		(Smalle $11723(.3 \ldots$ watts $) \div 230.4\left(\mathrm{~m}^{3}\right)$
		(Standard) 57(.24... watts per m^{3})
		(Small) 51 or 50.9 or $50.8\left(\ldots\right.$ watts per m^{3}) Al
		Conclusion as above
Look for		
- spelling - clarity of text explanations, - the use of notation and units		*Candidates not considering window area, or their window area $\leq 3 \mathrm{~m}^{2},(11520 \times 3.412=) 39306(.24 \mathrm{Btu})$ with a reason for selecting the Small radiator are awarded E1. Their maximum possible mark (for simplified problem) would be:
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND		M1, M1, A1, B0, M0, A0, A0, E1
	QWC	using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps		but with some errors in use of mathematical form, spelling, punctuation or grammar OR
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
	10	QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.

GCSE Mathematics - Linear Paper 2 Higher Tier November 2014	Marks	Final Mark Scheme Comments
4. Idea that exterior angle sum is 360° Idea to sum angles, sight of $3 x+2 x+x+38+34$ $(=6 x+72)$ Equate (their) sum of angles and 360° $x^{\circ}=48\left(^{\circ}\right)$	B1 B1 B1 B1 4	Sight of (360-72=)288($\left(^{\circ}\right.$) implies idea of 360° Allow if implied or given with an incorrect equation, e.g. ${ }^{\prime} 6 x+72=0$ ', or ' $3 x+2 x+x=540-34-38$ ', or ' $3 x+2 x+x=$ 468', accept with 'any multiple of 180 '- 72 provided >0 (e.g. 108, 288, 468, 648, 828, 1008, ...) Ignore ${ }^{\circ}$. CAO Award B4 for a correct answer, 48 Interior sum method: Interior angles 180-3x, 180-2x, 180-x, 180-38 \& 180-34 AND Sum interior angles ($3 \times 180=$) 540 $\left(^{\circ}\right.$) (or B1 for sight of all the interior angles) $\begin{align*} & 180-3 x+180-2 x+180-x+180-38+180-34=540 \quad \text { B1 } \\ & x\left({ }^{\circ}\right)=48\left({ }^{\circ}\right) \tag{B1} \end{align*}$
5.(a) $7800-7800 \times 23 / 100$ or 7800×0.77 6006 (metres) (b) $8 \times 27 \div 9$ (Rita's share) (£)24	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	Or equivalent complete method Complete calculation may be in stages Unambiguous or unlabelled. Do not accept if labelled 'Tomos's share'
6.(a) $3 \times 40^{2}-25$ 4775 (b)(i) $12 n-5$ (ii) $-2 n+50$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B2 } \\ \text { B2 } \\ 6 \\ \hline \end{gathered}$	Must be intention $3 \times 40 \times 40$, not for $(3 \times 40)^{2}$ Allow, e.g. ' 3×40 squared -25 ', provided not contradicted by further incorrect interpretation in a calculation Ignore ' $n=$ ' throughout (b) Accept unsimplified form. B1 for sight of 12 n Accept unsimplified form. B1 for sight of $-2 n$
7. One correct evaluation, $2 \leq x \leq 3$ 2 correct evaluations, $2.25 \leq x \leq 2.4$, one either side of 0 2 correct evaluations, $2.25 \leq x \leq 2.35$, one either side of 0 2.3 No calculations shown: accept "too high",">", etc.	B1 B1 M1 A1 4	x $x^{3}-x-10$ 2 -4 2.1 -2.839 2.2 -1.552 $\mathbf{2 . 2 5}$ $\mathbf{- 0 . 8 5 9 3 7 5}$ $\mathbf{2 . 3}$ $\mathbf{- 0 . 1 3 3}$ 2.31 0.016391 2.32 0.167168 2.33 0.319337 2.34 0.472904 $\mathbf{2 . 3 5}$ $\mathbf{0 . 6 2 7 8 7 5}$ $\mathbf{2 . 4}$ $\mathbf{1 . 4 2 4}$ 0.784256 2.5 3.125 2.6 4.976 2.7 6.983 2.8 9.152 2.9 11.489 3 14 An unsupported answer of ' 2.3 ' is awarded SC2

GCSE Mathematics - Linear Paper 2 Higher Tier November 2014	Marks	Final Mark Scheme Comments
8.(a) Sight or use of $1 \mathrm{~cm}: 500000 \mathrm{~cm}$ is $1 \mathrm{~cm}: 5 \mathrm{~km}$ or equivalent, e.g. 10 cm for each 50 km , or 1 cm to 5000 m Sight or use of 5 miles approximately 8 km or equivalent, e.g. $8 \times 170 / 5(\mathrm{~km})$ $\frac{8 \times 170}{5 \times 5}$ $54(.4 \mathrm{~cm})$ (b) 170 $\begin{aligned} & \div 44 \text { or } \div 38 \\ & \div 0.219 \\ & \times 1.56 \end{aligned}$ Finding a difference at any stage, depends on $\div 44$ and $\div 38$ $(£) 4.34$ or $(£) 4.35$ or amount round to either amount	B1 B1 M1 A1 M1 M1 M1 M1 A1	Allow 1 mile ≈ 1500 metres to 1650 metres, e.g. 5 miles $\approx 7.5 \mathrm{~km}$ Ignore place value errors with digits '5' FT conversions of miles to km involving multipliers $\times 1.5$ to $\times 1.65$ inclusive, e.g. $1.5 \times 170 \div 5$, for M1 only CAO. Do not FT from 1 mile $\approx 1500 \mathrm{~m}$ etc. (insufficient accuracy), only FT from 5 miles $\approx 8 \mathrm{~km}$ Alternative: $\begin{aligned} & 170 \text { miles } \times 8 \div 5=272 \mathrm{~km} \quad \text { B1 (For 5miles } \approx 8 \mathrm{~km} \text {) } \\ & 272 \mathrm{~km} \times 100000=27200000 \mathrm{~cm} \text { \& sight of } 500000 \text { B1 } \\ & 27200000 / 500000 \quad \text { M1 (Ignore place value error) } \\ & =54(.4 \mathrm{~cm}) \text { A1 (Do not ignore place value error) } \end{aligned}$ Methods in any order and may be embedded Allow $\div 0.22$ CAO Do not accept $£ 4.32$ or $£ 4.33$ from use of 1 litre ≈ 0.22 gallons Alternative embedded examples: $44 \times 0.219(=9.636) \quad O R 38 \times 0.219(=8.322) \quad M 1$ 170/9.636 ($=17.642$ litres) OR 170/8.322 ($=20.43$ litres) M1 (Here M1 \& M1 for equivalent $\div 44$ or $\div 38$ and $\div 0.219$, then) $(£) 1.56 \times 17.642(=£ 27.52)$ OR $(£) 1.56 \times 20.43(=£ 31.87)$ M1 Finding a difference at any stage, depends on embedded $\div 44 \text { and } \div 38$ $(£) 4.34$ or $(£) 4.35$ or amount round to either amount The first 3 M marks must be in order shown, they are for method not calculation, and must follow in the order shown, e.g. M0, M1 makes no sense, nor does M1, M0, M1

Useful values:
At 50mph: 170/44 (=3.8636...gallons)
At 60mph: 170/38 (=4.4736 ...gallons)
(Difference 170/38-170/44) (=0.61 \ldots. .gallons)
1 gallon fuel costs (£)1.56/ 0.219 (= £7.123...)
Number of litres: $170 / 44 \div 0.219(=17.642 \ldots)$ and $170 / 38 \div 0.219(=20.4277 \ldots)$
Costs: $\quad 17.642 \ldots \times 1.56$ and $20.4277 \ldots \times 1.56$
(Cost) 170/g $\times 1.56 / 0.219$
where $\mathrm{g}=44,38$ or $(170 / 44-170 / 38) \times 1.56 / 0.219$
Difference is cost is (£) 4.34 or $£ 4.35$ or an amount rounding to 4.34 or 4.35

GCSE Mathematics - Linear Paper 2 Higher Tier November 2014	Marks	Final Mark Scheme Comments
$\begin{aligned} & \text { 9(a) Sight of } 152.5 \text { and } 102.5 \\ & 152.5 \times 102.5 \\ & \qquad=15631(.25) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$ $\begin{aligned} & \text { (b)(i) Mid points } 50.5,150.5,250.5,350.5,450.5 \\ & 2 \times 50.5+6 \times 150.5+16 \times 250.5+34 \times 350.5+12 \times 450.5 \\ & \text { or equivalent } \\ & \quad \begin{array}{cc} (=22335) \\ \text { their } \Sigma f x / 70 & \text { or equivalent } \end{array} \\ & \qquad 319(.07 \ldots \text { pages }) \end{aligned}$ (ii) $319(.07 \ldots) \times 1100$ $3.5(09 \ldots) \times 10^{5} \text { or } 3.51 \times 10^{5}$	B1 M1 A1 U1 B1 M1 m1 A1 M1 A2 11	Allow 152.49° and 152.49° (i.e. with recurring 9) ISW. If no marks allow SC1 for answers between 15628.7... and 15630.999 ... only Independent mark. Accept also equivalents for work with cm or m *FT their mid points from within or at the bounds of the appropriate groups FT their $\Sigma f x / 70$ correctly evaluated FT their (i) or a value in the range 200 to 400 inclusive A1 for 350978 , or answers in the range 350900 to 351000 , or correct value incorrectly expressed FT for 'their $319(.07 \ldots)$ ' $\times 1100$ correctly evaluated for either A2 or A1 appropriately
*For information 9(b)(i) Use of $50,150, \ldots$ leads to $22300 / 70=318.57 \ldots$ (ii) Multiples of 1100 :		
$\begin{array}{r} \text { 10.(a) }\left(x^{2}=\right) 6.7^{2}+8.4^{2} \\ x^{2}=115.45 \quad \text { OR } x=\sqrt{ } 115.45 \end{array}$ $10.7(447 \ldots)$ (b) $\tan y=8.4 / 6.7$ OR $\sin y=8.4 / x \quad$ OR $\cos y=6.7 / x$ OR $\quad 8.4^{2}=6.7^{2}+x^{2}-2 \times 6.7 \times x \times \cos y$ OR $\cos y=\frac{6.7^{2}+x^{2}-8.4^{2}}{2 \times 6.7 \times x}$ $51\left(.423 \ldots{ }^{\circ}\right)$	M1 A1 A1 M1 A2 6	FT their value of x , must show a value substituted for M1 A1 for $\tan ^{-1} 1.25 \ldots$ or $\sin ^{-1} 0.78 \ldots$ or $\cos ^{-1} 0.62 \ldots$ (FT from $x=10.7 \mathrm{~cm}$ using sin gives 51.7° or 52°) ($F T$ from $x=10.7 \mathrm{~cm}$ using cos gives 51.2° or 51°)
11.(a) Method, equating coefficients or alternative First variable correct Method to find second variable Second variable correct $\begin{array}{cll} \text { (b) } \mathrm{p}-\mathrm{g}=3 \mathrm{~h} / \mathrm{f} & \text { OR } & \mathrm{fp}=3 \mathrm{~h}+\mathrm{fg} \\ \mathrm{f}(\mathrm{p}-\mathrm{g})=3 \mathrm{~h} & \text { OR } & \mathrm{fp}-\mathrm{fg}=3 \mathrm{~h} \\ \mathrm{~h}=\mathrm{f}(\mathrm{p}-\mathrm{g}) / 3 & \text { OR } & \mathrm{h}=(\mathrm{fp}-\mathrm{fg}) / 3 \end{array}$ (c) $A^{2}=x y$ or $A / \sqrt{y}=\sqrt{ } x$ $\mathrm{x}=\mathrm{A}^{2} / \mathrm{y}$	M1 A1 m1 A1 B1 B1 B1 B1 B1 9	Allow 1 slip, but not in equated coeffs. $x=1 / 2 \quad y=6$ FT their first variable FT until second error, if equivalent level of difficulty Mark final answer $f p=3 h+g \text { to give } h=\frac{f p-g}{3} \text { OR } p=3 h+f g \text { to give } h=\frac{p-f g}{3}$ -errors are not equivalent difficulty, award SC1 for a correct FT from either of these errors, i.e. for responses shown Allow $x=(A / \sqrt{ } y)^{2}$ or $x=A^{2} \div y$
12. Scale factor (smaller to larger) 1.4 or $3.5 / 2.5$ or $7: 5$ 1.4^{2} or $(3.5 / 2.5)^{2}$ or $25: 49$ Use of 1.4^{2} or $(3.5 / 2.5)^{2}$ or $25 / 4918.55 \div$ 1.4^{2} or $18.55 \times(2.5 / 3.5)^{2}$ or $18.55 \times 25 / 49$ or equivalent (£)9.46(42...)	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ 4 \end{gathered}$	OR 1.4^{3} or $(3.5 / 2.5)^{3}$ OR scale factor larger to smaller $0.714 \ldots$ or $2.5 / 3.5$ or $5: 7$ or $(0.714 \ldots)^{2}$ or $(2.5 / 3.5)^{2}$ or $(0.714 \ldots)^{3}$ or $(2.5 / 3.5)^{3}$ Allow (£)9.50 from correct working. Allow B1 \& SC1 for an answer of (£) 6.76(...) (Sight of $£ 13.25$ implies first B1 only)

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
GCSE Mathematics - Linear \\
Paper 2 Higher Tier November 2014
\end{tabular} \& Marks \& Final Mark Scheme Comments \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 13. } 8(2 x+3)+x \times 2 x=212.5 \\
\& 2 x^{2}+16 x+24=212.5 \\
\& 2 x^{2}+16 x-188.5=0 \\
\& x=\frac{-16 \pm \sqrt{ }\left(16^{2}-4 \times 2 \times-188.5\right)}{2 \times 2} \\
\& x=\frac{-16 \pm \sqrt{ } 1764}{4} \\
\& x=6.5 \quad(\text { and } x=-14.5)
\end{aligned}
\] \\
\((\) Area of the smaller rectangle \(=) 84.5\left(\mathrm{~cm}^{2}\right)\)
\end{tabular} \& M2
A1
A1
M 1
A1
A1
B1

8 \& | M1 if necessary brackets omitted or for the expression only, i.e. $8(2 \mathrm{x}+3)+\mathrm{x} \times 2 \mathrm{x}$ |
| :--- |
| FT from M1 provided a quadratic is formed |
| Must equate to zero |
| FT for their quadratic $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ where $\mathrm{a} \& \mathrm{~b} \& \mathrm{c}$ are $\neq 0$ Allow 1 slip in the substitution, not incorrect formula |
| Allow unsupported $6.5(\mathrm{~cm})$ following sight of quadratic equation |
| As a single answer. Depends on the award of all previous M marks |
| FT $2 x^{2}$ correctly evaluated provided all M marks are awarded |
| For trial and improvement method allow, as appropriate, the first M2, A1 marks for sight of working with equation (or expression) |
| Factorises: $\begin{aligned} 4 x^{2}+32 x-377 & =0,(2 x+29)(2 x-13)=0 M 2 \\ x & =6.5 \mathrm{Al}\end{aligned}$ |

\hline | $\begin{aligned} & \text { 14.(a) } \mathrm{BC}^{2}=5.4^{2}+7.9^{2}-2 \times 5.4 \times 7.9 \times \cos 82^{\circ} \\ & \mathrm{BC}^{2}=79.69575 \ldots \\ & \mathrm{BC}=8.9(272 . . \mathrm{cm}) \end{aligned}$ |
| :--- |
| (b) $\begin{array}{r} \text { Area }=1 / 2 \times 5.4 \times 7.9 \times \sin 82^{\circ} \\ 21\left(.122 \ldots \mathrm{~cm}^{2}\right) \end{array}$ | \& M1

A1
A1
M1
A1

5 \& | Accept $9(\mathrm{~cm})$ from correct working |
| :--- |
| If the candidate has calculated other angles or sides incorrectly but uses appropriately in evaluating their $1 / 2$ absinC accurately then award SC1 |

\hline | 15. Overall strategy, a complete tree diagram (e.g. $1^{\text {st }}$ Meg \& Lotti, $2^{\text {nd }}$ goal \& not goal) $0.7 \times 0.6+0.3 \times 0.1 \quad(=0.42+0.03)$ |
| :--- |
| 0.45 | \& S1

M2
A1

4 \& | Or sight of sum of two products of probabilities |
| :--- |
| M1 for sight of either $0.7 \times 0.6(=0.42)$ or $0.3 \times 0.1(=0.03)$, or $70 \times 0.6+30 \times 0.1$, or equivalent |
| Alternative |
| $1-P($ being goalkeeper $)$ as overall strategy S1 |
| $1-(0.7 \times 0.4+0.3 \times 0.9)$ |
| (M1 either 0.7×0.4 or 0.3×0.9 within $1-\ldots$ calculation, or for $1-(70 \times 0.4+30 \times 0.9)$) |
| 0.45 |
| A1 |

\hline \& | S1 |
| :--- |
| B1 |
| B1 |
| M1 |
| A1 |
| 5 | \& | FT for the correct manipulation of their equation with r in two terms, equivalent level of difficulty |
| :--- |
| FT 'their r' provided S1 and B1 previously awarded |
| Award SC2 for simplified problem $\pi r=16$ or equivalent, leading to area $\left(1 / 2 \times \pi \times(16 / \pi)^{2}=\right) 40.7\left(\ldots \mathrm{~cm}^{2}\right)$, or SC1 for 'this full method' but leading to an incorrect answer |

\hline
\end{tabular}

WJEC

245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk
website: www.wjec.co.uk

