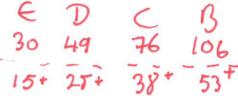


Surname	Centre Number	Candidate Number
Other Names		0



GCSE - NEW

3300U30-1

MATHEMATICS UNIT 1: NON-CALCULATOR INTERMEDIATE TIER

TUESDAY, 8 NOVEMBER 2016 - MORNING

1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

Take π as 3.14.

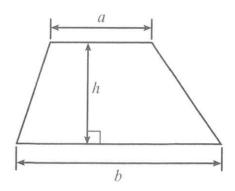
INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

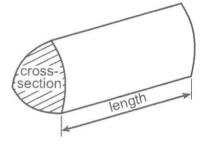
Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.


In question 6, the assessment will take into account the quality of your linguistic and mathematical organisation. communication and accuracy in writing.

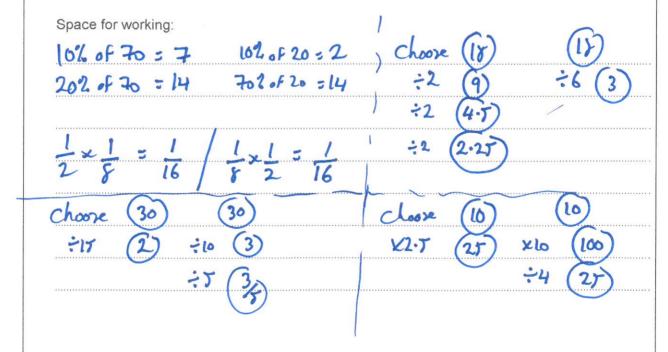
For Ex	For Examiner's use only					
Question	Maximum Mark	Mark Awarded				
1.	6	6				
2.	3	9				
3.	3	12				
4.	6	18				
5.	5	27				
6.	7	30				
7.	5	35				
8.	3	37				
9.	3	41				
10.	6	47				
11.	7	54				
12.	3	57				
13.	4	61				
14.	4	67				
15.	5	70				
16.	6	76				
17.	4	80				
Total	80					
	The second liverage and the se					



Formula List - Intermediate Tier

Area of trapezium = $\frac{1}{2} (a + b)h$

Volume of prism = area of cross-section × length


1.	Calculate each of t	he following.		Examiner only
	(a) 0·4 × 0·7	0.28	[1]	ВІ
	(b) 13·8 – 7·45	°13.780 - 7.45	[1]	
		6·3 <i>5</i>		B1
	(c) 3 ³ - 2 ⁴	$3^{3} = 3 \times 3 \times 3 = 27$ $2^{4} = 2 \times 2 \times 2 \times 2 \times 2 = 16$	[2]	ВІ
		11		B1 100000000000000000000000000000000000
	(d) $\frac{9}{10} - \frac{3}{5} \stackrel{2}{=} 2$		[2]	
	10 10	<u>3</u> Lo		MI
				Aı

[3]

2.	Circle eith	er TRUE	or FA	LSE for	each of	f the	following	statements.
----	-------------	---------	-------	---------	---------	-------	-----------	-------------

20% of 70 is the same as 70% of 20.	TRUE	FALSE
$\frac{1}{2}$ of $\frac{1}{8}$ is the same as $\frac{1}{8}$ of $\frac{1}{2}$	TRUE	FALSE
A number is halved. The answer is halved, and then this answer is halved again. This gives the same answer as dividing the original number by 6.	TRUE	FALSE
Dividing a number by 15 is the same as first dividing by 10 and then dividing the answer by 5.	TRUE	FALSE
Multiplying a number by 2.5 is the same as first multiplying by 10 and then dividing the answer by 4.	TRUE	FALSE

Examiner only

[3]

A shop has 31 plant pots.

Some are blue, some are yellow and the rest are red.

There are five more blue pots than yellow pots.

There are four times as many blue pots as there are red pots.

Calculate how many pots there are of each colour.

WELLB B: 4R

$$B + B - 5 + B = 31$$

Yellow ..

4. (a) Write down the next two numbers in the following sequence. [2]

12

BI

BI

Simplify the expression 410g - 5f - 3g + 3f.

[2]

- Using the formula 2T = M + 3K, find the value of K when T = 11 and M = 4.

[2]

BI

BI

$$22 = 4 + 3k$$

18=3=K

5. Three red cards have the following numbers written on them.

Examiner only

3

6

9

Four green cards have the following numbers written on them.

1

2

3

4

In a game, the cards are turned face down.

A player chooses one red card and one green card at random.

The player's score is the sum of the two numbers.

(a) Complete the following table.

[1]

Red card

	Score					
9	(0)	11	12	(13)		
6	7	8	9	(10)		
3	4	5	6	7		
	1	2	3	4		

Green card

(b) A player wins a prize if the score is more than 9.
Safira plays the game once. What is the probability that she wins a prize?

[2]

3

0)

(c) 60 people play the game once.

Approximately how many people would you expect to win a prize?

2] |

$$\frac{5}{12}$$
 x 60 = 5 x 5 = 25

A

6. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

A right-angled triangle BCD is joined to a rectangle ABDE, as shown below.

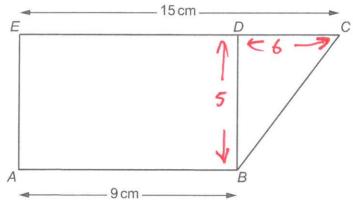


Diagram not drawn to scale

The area of the rectangle is 45 cm².

Calculate the area of the right-angled triangle. You must show your working.

[5 + 2 OCW]

MI

Al

MI

AI

DC = 15-9 = 6cm

Need BO: AREA: ABX BD

9×BD = 45

BD = 45 = 5

So aver of ABDC = 1 x 5 x 6 = 15 cm

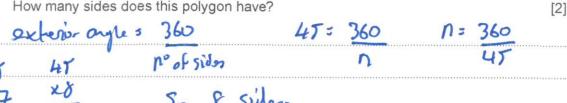
7.	Solv	e each of the following equations.	Examiner only
	(a)	$\frac{w}{5} = 10$]
		W: 10×5	<i>B</i> 1
	*******	W = 50	
	(b)	$\frac{42}{x} = 7$	
		4257x1c	ומ
		42 =x x=6	וכי
		·+	
		13y - 5 = 9y + 27 $9y - 5 - 9y = 27$	1
	***************************************	134 - 94 = 27 +5	BI
		Ley = 32	BI
	***********	4 = 32 = 8	RI
		4	10.

Calculation:	Answer will be:
even number + even number	even
even number + odd number	ONA
odd number + odd number	even
even number × even number	even
even number × odd number	even
odd number × odd number	odd

Examiner only

- Write down five numbers that satisfy all of the following conditions:
 - They are all between 1 and 9 inclusive.
 - They have a median value of 6. They have a range of 7.

10	Their	mean	is	5.

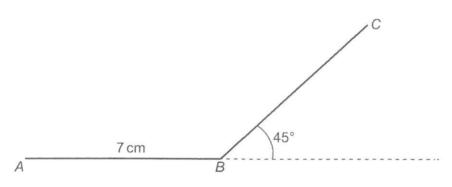

[3]

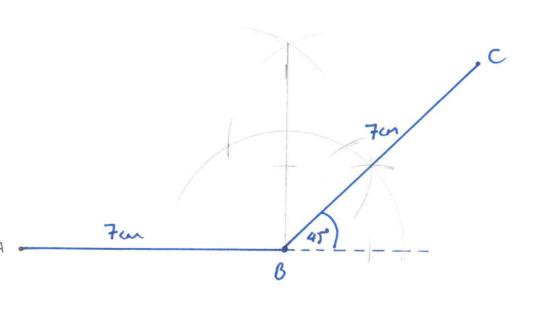
5x5 = Total Total = 25

10. A regular polygon has exterior angles of 45°.

How many sides does this polygon have?

(b) Each side of this regular polygon is 7 cm. A sketch of two sides, AB and BC, of the polygon is shown below.




Diagram not drawn to scale

Using only a ruler and a pair of compasses, construct an accurate drawing that shows these two sides of the polygon.

The point A has been given.

You must show your construction arcs.

WJEC CBAC Ltd.

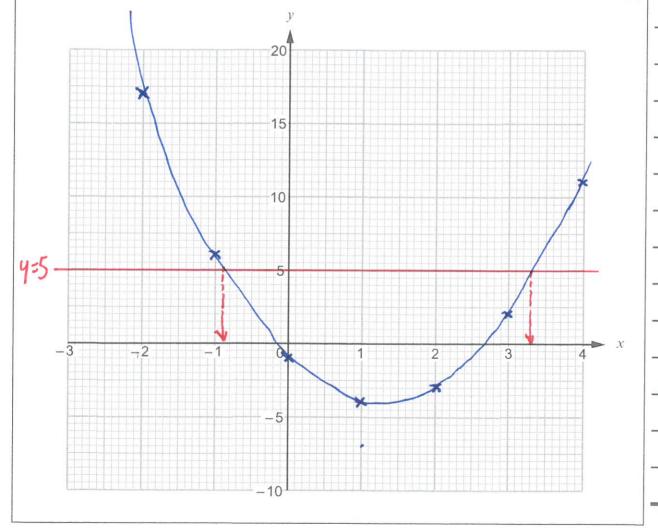
[4]

Examiner only

Examiner only

[2]

[2]


11. (a) The table below shows some of the values of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4.

Complete the table by finding the value of y for x = -1 and for x = 2.

X	-2	-1	0	1	2	3	4
$y = 2x^2 - 5x - 1$	17		-1	-1	-2	2	11

 $x=-2 \quad y=2(-2)^2-5(-2)-1 \quad |x=-1| \quad y=2(-1)^2-5(-1)-1 \quad |x=2(-1)^2-5(-1)-1| \quad |x=2(-1)^2-5(-1)^2$

(b) On the graph paper below, draw the graph of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4.

Draw the line y = 5 on the graph paper. (C)

> Write down the values of x where the line y = 5 cuts the curve $y = 2x^2 - 5x - 1$. Give your answers correct to 1 decimal place.

[2]

Examiner only

Values of x are $\frac{-0.9}{}$ and $\frac{3.3}{}$

(d) Circle the equation below whose solutions are the values you have given in (c). [1]

 $2x^2 - 5x - 6 = 0$ $2x^2 - 5x - 5 = 0$

137

$$2x^2 - x - 1 = 0$$

$$2x^2 - x - 1 = 0 \qquad 2x^2 - 5x + 4 = 0$$

 $2x^2-5x-1=5$ 2x2-5x-1-5 =0

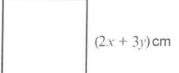
222-52-6:0

12. A fa	ir six-sided did	ce and a fair coir	n are thrown together	once.		Exan
Circ	le the correct	answer for each	of the following state	ments.		
(a)	The numbe	r of possible out	comes is	_		[1]
	2	6	8	12	24.	BI
(b)	The probab	ility of getting a	4 on the dice and a ta	il on the coin	is	[1]
	1 8	$\left(\frac{1}{12}\right)$	1/2	<u>1</u>	1/24 ·	131
(c)	The probabi	lity of getting a i	multiple of 3 on the	lice and a hea	d on the coin is	[1]
	1 8	1 12	1/2	$\left(\frac{1}{6}\right)$	1/24 ·	Bi
Spac	e for working					
********	Dice	Coir On	nice coin			
*********	1	H	1, T			
***********	2	H	2, T			
	(3)	4)	3 T			
	4	Н	4 T			
***********	5 '	Н	5,T			
********	6	H	6.T			

	2					
	17	- 6				

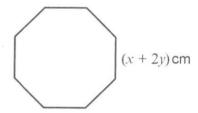
	13.	(a)	Make m the subject of the formula	y = 6m	+ 7.		[2]	Examiner only
				4-7		6m		131
				4-7	=	М		BI
I				6				

(b)	Factorise	$6x^2 - 12x$.	BXX - Bx2xx	[2]
			6x(x-2)	


14. Find, in standard form, the value of each of the following.

(a)
$$\frac{7.5 \times 10^6}{5000}$$
 [2] $\frac{7.5 \times 10^6}{5 \times 10^3} = (7.7 \div 5) \times (10^6 \div 10^3)$ [1.5 × 10³

(b)
$$(2.3 \times 10^3) + (6.4 \times 10^4)$$
 [2] 6.63×10^4



15. Each side of a square is of length (2x + 3y) cm. The perimeter of the square is 62 cm.

Examiner only

Each side of a regular octagon is of length (x + 2y) cm. The perimeter of the octagon is 72 cm.

Use an algebraic method to find the value of x and the value of y.

[5]

	,	2x+3y=15.5	_(1)	
2	22	2x + Ly = 18	-3	וויין

(3) - (1)
$$y = 2.5$$

Substitute in(2)
$$x+2*2.5 = 9$$

 $x+5 = 9$
 $x = 9-5$

7:4

$$x = A \qquad y = 2.5$$

16.	Alwyn often drives from Bangor to Cardiff. He always chooses one of two routes for these journeys. He either travels through Rhayader or through Hereford. The probability that he travels through Rhayader is 0·7. Sometimes he decides to stop for a break during his journey. His decision is independent of the route he takes. The probability that he travels through Rhayader and stops for a break is 0·42. (a) Complete the following tree diagram.	Examine only
	Route Stops for a break	***
	? O·6 Yes O·42 O·7×?: O·42 ? s O·42 ? s O·42 O·7 Rhayader	M1 6 A1
•	0.4 No 0.6 Yes	<i>B</i> 1
	Hereford No	A
	(b) Calculate the probability that Alwyn travels through Hereford but does not stop for a break.	1

17.	William has n marbles. Lois had 4 times as many marbles as William, but she has now lost 23 of them.	Examine only
	Lois still has more marbles than William.	
	Write down an inequality in terms of <i>n</i> to show the above information. Use your inequality to find the least number of marbles that William may have. [4]	
	4n -23 > n	BIBI
	40 > 0 + 23	
	4n-n 723	
	3~723	
	N 7 23	
	3	
	n773	BI
	5. n = 8	
	J6 11 = 0	BI
		•07

END OF PAPER

GCSE MATHEMATICS	T	1	
Unit 1 : Intermediate Tier	1	Mark	Comment
Autumn 2016			
1.(a) 0.28 or equivalent e.g. 28/100		B1	Allow ·28.
1.(b) 6·35		B1	
1.(c) (27 – 16 =) 11		B2	B1 for sight of 27 OR 16.
1.(d) <u>Correctly</u> using a common denominator		M1	M1 for 9/10 - 6/10 OR 45/50 - 30/50 OR 0·9 - 0·6
3/10 OP 15/50 OP 0.3 or equivalent		A1	OR equivalent Mark final answer.
3/10 OR 15/50 OR 0·3 or equivalent. 2. TRUE		B3	B3 for 4 or 5 correct.
TRUE		55	B2 for 3 correct.
FALSE			B1 for 2 correct.
FALSE			
TRUE			
3.			Note Check for the required conditions being met
			and not the individual numbers.
			Required conditions are:
Blue 16 Yellow 11 Red 4		В3	'B = Y + 5', 'B = 4R' and 'B + Y + R = 31'. A condition must be met using non-negative
Dide to Tellow II Thed 4			integers, otherwise B0.
			B3 all three conditions correct.
			B2 for two conditions correct.
			B1 for one condition correct.
			Answer space answers take precedence. If answer
			spaces are left blank allow <u>unambiguous</u> indication
			of their answers.
			A number must be given for 'Blue', else B0.
			Blank spaces for 'Yellow' and 'Red' to be taken as 0 unless <u>unambiguously</u> indicated elsewhere.
4.(a) 5 -2		B2	B1 for 5.
1.(4)		02	B1 F.T. for 'their 5' – 7 if negative.
4.(b) $7g - 2f$		B2	Must be an expression for B2.
0.85			B1 for sight of $(+)7g OR - 2f$.
			B1 for $7g + -2f$.
1() 5 111 (00 1 0) 05 10 00		- 54	Mark final answer.
4.(c) For sight of 22 = 4 + 3K OR 18 = 3K		B1	'2 × 11' must be shown to be 22 and used at some
OR <u>22 – 4</u> (=K)			stage.
(K=) 6		B1	An answer of 6 gains both B1 marks.
			Allow an embedded answer e.g.
			2×11 = 4 + 3 ×6 gains B2.
			BUT 22 = 4 + 18 alone is B0.
			B1B0 for 18/3 as a final answer.
Ribbon marking for 5(a), 5(b) and 5(c).		D.4	All the same to the same of
5.(a) (9) 10 (11) 12 13		B1	All six entries correct.
(6) 7 (8) 9 10			
(3) (4) (5) (6) (7) (1) (2) (3) (4)			
Ribbon marking for 5(a), 5(b) and 5(c).			
		B2	F.T. 'their fully completed table'.
5.(b) <u>5</u>			Penalise -1 for only words (5 out of 12) or
			only ratio (5:12).
			B1 for x/12 if x < 12.
Dibbon monting for E(a) E(b) and E(a)			B1 for $5/y$ if $y > 5$.
Ribbon marking for 5(a), 5(b) and 5(c). 5×60		M1	F.T. 'their 5/12' (including e,g, ½, 50%, 50-50,
5.(c) <u>5</u> × 60		1411	evens)
= 25		A1	25/60 OR 25:60 gets M1A0.
			25 out of 60 gets M1A1.
			3

©WJEC CBAC Ltd.

GCSE MATHEMATICS Unit 1 : Intermediate Tier Autumn 2016	~	Mark	Comment
6 (BD or AE) × 9 = 45 OR (BD or AE =) 45/9	1	M1	Accept any unambiguous reference to or notation for BD and AE. Allow use of 'height' or 'width'.
(BD or AE =) 5(cm)	✓	A1	May be seen on the diagram.
(CD =) 6(cm)	~	B1	May be seen on the diagram.
(Area of triangle =) $\frac{5 \times 6}{2}$	✓	M1	F.T. 'their 5' provided it clearly represents BD. F.T. 'their 6' provided it clearly represents CD.
$= 15(cm^2)$	~	A1	No marks for an unsupported 15 BUT 15cm ² gains all 5 marks.
			Alternative method. $9 \times (BD \text{ or } AE) = 45 \text{ OR } (BD \text{ or } AE =) 45/9 M1$ (BD or AE) = 5(cm) A1 $(Area \text{ of } trapezium =) 9 + 15 \times 5$ M1 (F.T. 'their 5') $= 60(cm^2)$ A1 $(Area \text{ of } triangle = 60 - 45 =) 15(cm^2)$ A1
Organisation and Communication.	~	OC1	For OC1, candidates will be expected to: • present their response in a structured way • explain to the reader what they are doing at each step of their response • lay out their explanation and working in a way that is clear and logical
Accuracy of writing.	~	W1	For W1, candidates will be expected to: show all their working make few, if any, errors in spelling, punctuation and grammar use correct mathematical form in their working use appropriate terminology, units, etc.
7.(a) $(w =) 50$		B1	Accept embedded answer. Mark final answer.
7.(b) $(x =)$ 6		B1	Accept embedded answer. Mark final answer. (x =) 42/7 is B0.
7.(c) $13y - 9y = 27 + 5$ $4y = 32$ $y = 8$		B1 B1 B1	To gain the first two B1 marks there must be an equation. Accept embedded answer. F.T. until 2 nd error. 32/4 not accepted as final answer. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. Mark final answer.

© WJEC CBAC Ltd.

GCSE MATHEMATICS Unit 1 : Intermediate Tier Autumn 2016			1	Mark	Comment
8					
	Sum	Answer			
	even + even	(even)			
	even + odd	odd			
	odd + odd	even		B3	For all 5 correct.
	even × even	even			B2 for 4 correct. B1 for 3 correct.
	even × odd	even			B0 for fewer than three correct.
	odd × odd	odd			
AlMR	I four conditions met. II numbers between 1 a Iedian value = 6 ange = 7 otal = 25	and 9 inclusive.		B3	B2 for three conditions met. B1 for two conditions met. Possible answers for B3 are 1, 2, 6, 8, 8. OR 1, 3, 6, 7, 8. OR 1, 4, 6, 6, 8. OR 2, 2, 6, 6, 9. Must have five numbers, otherwise B0. Numbers need not be integers. Numbers shown in the boxes take precedence. If answer boxes are left blank allow unambiguous indication of their five numbers.
10. (a)	360 45			M1	For a clear intention of finding how many 45s in 360.
	MATE .	sides)		A1	Accept embedded answers e.g. 360/8 =45 or 45 × 8 = 360 for M1A1.
10.(b)	Correct construction o	f 90°.		B2	Do not penalise if they use their own point A. <u>Use overlay</u> but arcs required for the 3 'angle marks'. With sight of accurate 'method arcs'. For this B2 the construction need not be at point B. (Final B1 will not then be awarded) B1 for sight of 'method arcs' but perpendicular line not drawn (Unless intersection of construction arcs for 90° are correctly used to construct the 45° angle. In this case the B2 and B1 are gained)
Correct bisector of 90°.				B1	With sight of accurate 'method arcs'. F.T. 'their 90°'.
	AB = 7cm AND	BC = 7cm		B1	Allow ± 0·2cm. Do not penalise if the line AB is extended as long as the position of point B is unambiguous. (Allow labelling of points B and C to be missing if end points are unambiguously identifiable.) If all marks gained but angle ABC = 45°, penalise -1.

GCSE MATHEMATICS Unit 1 : Intermediate Tier Autumn 2016	1	Mark	Comment
Ribbon marking for 11(a), 11(b) and 11(c).		B2	B1 for each.
Ribbon marking for 11(a), 11(b) and 11(c). 11.(b) 7 correct plots. Curve drawn.		P1 C1	Use overlay. F.T. 'their (-1,6)' and 'their (2,-3)'. Allow ± '½ a small square'. 'F.T. 'their plots'. At least 6 plots required Clear intention to draw a curve through 'their
Ribbon marking for 11(a), 11(b) and 11(c). 11.(c) -0.9 and 3.4		B2	plotted points'. B1 for each. Allow (-0·9,5) and (3·4,5). F.T. intersection of 'their curve' with y = 5 provided exactly 2 intersections seen on graph. Allow ± '½ a small square'. If no marks gained then SC1 for either of the following. y = 5 drawn correctly, OR Two correct F.T. values given for 'their straight line' and 'their curve' provided exactly 2 intersections seen on graph.
11.(d) $2x^2 - 5x - 6 = 0$		B1	
Ribbon marking for 12(a) and 12(b).		D1	
12.(a) 12 Ribbon marking for 12(a) and 12(b). 12.(b) 1/12		B1 B1	F.T. 1/'their (a)'
12.(c) $\frac{1}{6}$		B1	
13. (a) $6m = y - 7$ or $y - 7 = 6m$ or $-6m = 7 - y$ $m = \underbrace{y - 7}_{6} \text{ or } m = \underbrace{7 - y}_{-6} \text{ or } m = (y - 7) \div 6$		B1 B1	F.T. only from $6m = y + 7$. B1B0 for $-m = \frac{7 - y}{6}$ or equivalent. Note Unsupported $m = y - 7 \div 6$ is B0B0. Unsupported $y - 7$ is B1BO ('m' missing)
13.(b) 6x (x – 2)		B2	B1 for any partial correct factorisation. OR B1 for $6x(x)$ OR B1 for $6x(2)$
14.(a) 1·5 × 10 ³		B2	If B2 not awarded, B1 for sight of 1500. OR B1 for 1.5×10^{n} from a denominator of 5×10^{3} seen. OR B1 for $a \times 10^{3}$ with $1 \le a < 10$ from a denominator of 5×10^{3} seen.
14.(b) 6.63 × 10 ⁴		B2	B1 for 6·6()× 10 ⁴ if B2 not awarded. B1 for any correct answer but not in standard form.

4

©WJEC CBAC Ltd.

Unit 1: Intermediate Tier Autumn 2016 15. (Perimeter of square =) $4 \times (2x + 3y) = 62$ (Perimeter of octagon =) $8 \times (x + 2y) = 72$ Correct method to solve simultaneous equations, as far as attempt at subtraction $ y = 2.5 \\ x = 4 $ Correct method for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. 0.7 × P(Yes) = 0.42 P(Yes) = 0.6 0.6, 0.4, 0.6 and 0.4 correctly placed. Ribbon marking for 16(a) and 16(b). 16(b) 0.3 × 0.4 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. (least number of marbles =) 8 Whark Comment Autumn 2016 B1 Sight of $8x + 12y = 62$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent e.g. $2x + 3y = 15.5$ Sight of $8x + 16y = 72$ or equivalent in equation.) A1 F.T. 'their equations'. A1 F.T. from their 1^{50} variable. (Substitution in any relevant equation.) A1 F.T. 'their P(Yes)', if between 0 and 1 but not 0.5. A2 B1 for $4n + 23 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $	GCSE MATHEMATICS			
15. (Perimeter of square =) $4 \times (2x + 3y) = 62$ $(Perimeter of square =) 4 \times (2x + 3y) = 62 (Perimeter of octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times (x + 2y) = 72 (Perimeter octagon =) 8 \times ($		1	Mark	Comment
(Perimeter of octagon =) $8 \times (x + 2y) = 72$ Correct method to solve simultaneous equations, as far as attempt at subtraction Yes 2.5 X = 4 Ribbon marking for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 0.3×0.4 M1 Allow their notation for P(Yes). A1 A1 A2 A2 A1 A3 A1 A4 A1 A5 A1 A5 A1 A6 A1 A6 A1 A7 A1 A7 A1 A7 A1 A7 A1 A8 A1 A8 A1 A8 A1 A9 A1 A9 A1 A9 A1 A	Autumn 2016			
Correct method to solve simultaneous equations, as far as attempt at subtraction Allow 1 'slip', if multiplication used, but not in 'equated variable' for M1 only. F.T. their equations'. Allow 1 'slip', if multiplication used, but not in 'equated variable' for M1 only. F.T. from their 1st variable. (Substitution in any relevant equation.) Ribbon marking for 16(a) and 16(b).	15. (Perimeter of square =) $4 \times (2x + 3y) = 62$	V	B1	
Correct method to solve simultaneous equations, as far as attempt at subtraction $ \begin{array}{cccccccccccccccccccccccccccccccccc$	(Parimeter of actors =) 9 × (× + 2+2 = 72		D1	
Correct method to solve simultaneous equations, as far as attempt at subtraction $ \begin{array}{cccccccccccccccccccccccccccccccccc$	(Perimeter of octagon =) $8 \times (x + 2y) = 72$	V	ВТ	
as far as attempt at subtraction $y = 2.5$ $x = 4$ A1 A1 F.T. from their 1st variable. (Substitution in any relevant equation.) Ribbon marking for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ $0.6, 0.4, 0.6 and 0.4 correctly placed. Ribbon marking for 16(a) and 16(b). 16(b) 0.3 × 0.4 = 0.12 17. 4n - 23 > n \text{ or } n < 4n - 23 or equivalent. A1 A1 A1 A1 A1 A1 A1 A1 A1 A$				\(\lambda \cdot \frac{2y}{2y} = 3
'equated variable' for M1 only. y = 2.5		✓	M1	
$y = 2.5$ $x = 4$ A1 F.T. from their 1 st variable. (Substitution in any relevant equation.) Ribbon marking for 16(a) and 16(b). $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ $0.6, 0.4, 0.6 \text{ and } 0.4 \text{ correctly placed.}$ Ribbon marking for 16(a) and 16(b). $16(b) 0.3 \times 0.4$ $17. 4n - 23 > n \text{ or } n < 4n - 23$ or equivalent. $17. 4n - 23 > n \text{ or } n < 4n - 23$ or equivalent. $182 B1 \text{ for } 4n + 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n \text{ or } n < 4n - 23 > n + 23 \text{ giving an answer of } 16)$ B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)	as far as attempt at subtraction			
Ribbon marking for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 $P(Yes) = 0.12$ 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. (least number of marbles =) 8 A1 F.T. from their 1^{st} variable. (Substitution in any relevant equation.) A1 A1 A1 A1 A1 A1 A1 A1 A1 A				'equated variable' for M1 <u>only.</u>
Ribbon marking for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 $P(Yes) = 0.12$ 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. (least number of marbles =) 8 A1 F.T. from their 1^{st} variable. (Substitution in any relevant equation.) A1 A1 A1 A1 A1 A1 A1 A1 A1 A	v = 2·5		A1	
Ribbon marking for 16(a) and 16(b). 16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ $0.6, 0.4, 0.6$ and 0.4 correctly placed. Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. Ribbon marbines =) 8 (least number of marbles =) 8 $V \times B2$ Ribbon marking for 16(a) and 16(b). $V \times B2$ $V \times B3$ $V \times B4$,			F.T. from their 1 st variable. (Substitution in any
16.(a) 0.3 on 'Hereford' branch. $0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ $0.6, 0.4, 0.6$ and 0.4 correctly placed. Allow their notation for $P(Yes)$. Blue 16. Allow their notation for $P(Yes)$. Blue 16. Allow their notation for $P(Yes)$. Allow their notation for $P(Yes)$. Blue 16. Allow their notation for $P(Yes)$. Blue 16. Allow their notation for $P(Yes)$. Blue 18. Allow 19. Allow 19. Allow 19. Blue 18. Allow 19. Allow 19. Allow 19. Allow 19. Allow 19.				
$0.7 \times P(Yes) = 0.42$ $P(Yes) = 0.6$ $0.6, 0.4, 0.6 \text{ and } 0.4 \text{ correctly placed.}$ $16(b)$ 0.3×0.4 $= 0.12$ $17.$ $4n - 23 > n \text{ or } n < 4n - 23 \text{ or equivalent.}$ $(least number of marbles =)$ 8 $0.6, 0.4, 0.6 \text{ and } 0.4 \text{ correctly placed.}$ $= 0.12$ $18.$ $19.$			D.4	
P(Yes) = 0.6 $0.6, 0.4, 0.6 \text{ and } 0.4 \text{ correctly placed.}$ Ribbon marking for 16(a) and 16(b). $16(b)$ 0.3×0.4 $0.6, 0.4, 0.6 \text{ and } 0.4 \text{ correctly placed.}$ M1 A1 F.T. 'their P(Yes)', if between 0 and 1 but not 0.5. M1 A1 F.T. 'their values' if both between 0 and 1. B2 B1 for $4n \pm > n$ OR B1 for $4n \pm > n$ OR B1 for $4n - 23 > n + b$ B2 Ribbon marking for 16(a) and 16(b). B1 for $4n + 23 > n + b$ B2 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)	16.(a) 0.3 on Hereford branch.	V	B1	
P(Yes) = 0.6 0.6 , 0.4 , 0.6 and 0.4 correctly placed. Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 0.6×0.4 0.7×0.4	$0.7 \times P(Yes) = 0.42$	/	M1	Allow their notation for P(Yes).
Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 $= 0.12$ 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. B2 B1 for $4n + 23 > n$ or $n < 4n - 23 > n$. B3 B2 B1 for $4n + 23 > n$. B4 B2 B1 for $4n + 23 > n$. B5 B2 B1 for $4n - 23 > n$. B6 B1 for $4n - 23 > n$. B7 B2 B2 B2 B3 for $4n - 23 > n$. B8 B3 F3 F3 F4 F5 F5 F7		✓		
Ribbon marking for 16(a) and 16(b). 16(b) 0.3×0.4 $= 0.12$ 17. $4n - 23 > n$ or $n < 4n - 23$ or equivalent. B2 B1 for $4n + 23 > n$ or $n < 4n - 23 > n$. B3 B2 B1 for $4n + 23 > n$. B4 B2 B1 for $4n + 23 > n$. B5 B2 B1 for $4n - 23 > n$. B6 B1 for $4n - 23 > n$. B7 B2 B2 B2 B3 for $4n - 23 > n$. B8 B3 F3 F3 F4 F5 F5 F7				
16(b) 0.3×0.4 $= 0.12$ 17. $4n-23 > n$ or $n < 4n-23$ or equivalent. B2 B1 for $4n + 23 > n > n > n > n > n > n > n > n > n > $		✓	A1	F.T. 'their P(Yes)', if between 0 and 1 but not 0·5.
17. $4n-23 > n$ or $n < 4n-23$ or equivalent. B2 B1 for $4n \pm > n$ OR B1 for $4n = 23 > n + b$ a $\neq 0$. OR B1 for $4n = 23 > n$. B2 B2 B3 for $4n = 23 > n + b$ a $\neq 0$. OR B1 for $4n = 23 > n + b$ a $\neq 0$. OR B1 for $4n = 23 > n + b$ a $\neq 0$. B3 for $4n = 23 > n + b$ a $\neq 0$. B4 for $4n = 23 > n + b$ a $\neq 0$. B5 for $4n = 23 > n + b$ a $\neq 0$. B6 for $4n = 23 > n + b$ a $\neq 0$. B6 for $4n = 23 > n + b$ a $\neq 0$. B9 for $4n = 23 > n + b$ a $\neq 0$. B1 for $4n = 23 > n + b$ a $\neq 0$. B1 for $4n = 23 > n + b$ a $\neq 0$. B1 for $4n = 23 > n + b$ a $\neq 0$. B2 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n = 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. 3 (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n = 23 > n + 23$)			1/11	F.T. 'their values' if both between 0 and 1
or equivalent. OR B1 for $4n - 23 > an + b$ $a \ne 0$. OR B1 for $4n - 23 \ge n$. B0 for $4n - 23 < n$ B2 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)			C C C C C C C C C C C C C C C C C C C	1.1. tileli valdes il botti betweeli o aliq 1.
(least number of marbles =) 8 B2 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)	17. $4n-23 > n \text{ or } n < 4n-23$	11	B2	
(least number of marbles =) 8 B2 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23 \text{ or equivalent}$. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)	or equivalent.			
(least number of marbles =) 8 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)				OR B1 for $4n - 23 \ge n$.
(least number of marbles =) 8 F.T. from 'their inequality', if of equivalent difficulty. (e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)				R0 for $4n - 23 < n$
(e.g. $4n - 23 > n + 23$ giving an answer of 16) B1 for sight of $n > 23$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)				B0 101 411 - 23 3 11
B1 for sight of $n > \frac{23}{3}$ or equivalent. (With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)	(least number of marbles =) 8	//	B2	
(With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)				(e.g. 4n – 23 > n + 23 giving an answer of 16)
(With similar F.T. answer e.g. $n > 46/3$ from above example of $4n - 23 > n + 23$)				R1 for sight of n > 23 or equivalent
example of $4n - 23 > n + 23$)				3
OP allow P1 for n > 7 OP n > 8				example of $4n - 23 > n + 23$)
				OP allow P1 for n > 7 OP n > 8
(With similar F.T. answer e.g. $n > 15$ from above				
example of $4n - 23 > n + 23$)				