GCSE MARKING SCHEME

MATHEMATICS - WALES PILOT

NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - WALES PILOT. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
Mathematics Paper 1 - Foundation Tier 1
Mathematics Paper 2 - Foundation Tier 4
Mathematics Paper 1 - Higher Tier 7
Mathematics Paper 2 - Higher Tier 9

2011 Autumn Paper 1 (Non calculator) Wales Pilot Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME (14/11/2011)
1. (a) (i) (f) 46705 (ii) nine thousand four hundred and seventeen (pounds) (b) $46 \quad 64 \quad 406 \quad 460 \quad 604 \quad 640$ (c) (i) 102 (ii) 28	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	C.A.O. C.A.O. C.A.O. C.A.O. C.A.O. Allow embedded answers e.g. $28+85=113$
2. (a) Lines Curve (b) Drawing of a rectangle or rhombus Rectangle OR Rhombus (c) Drawing of an isosceles triangle Isosceles	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ 6 \end{gathered}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
3. (a) (i) 2578 (ii) 8725 (b) (i) 4740 (ii) 4700 (c) $40 / 5$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	C.A.O. C.A.O. C.A.O. C.A.O. OR other correct method MR-1 for misread of two $£ 20$ as one $£ 20$.
4. $\quad \begin{array}{ll}1 \text { litre } \\ & 60 \mathrm{~kg} \\ & 340 \mathrm{~km} \\ & 600 \mathrm{~cm}^{2}\end{array}$	$\begin{gathered} \hline \text { B1 } \\ 4 \end{gathered}$	$\begin{aligned} & \hline \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
5. (a) $1 / 50$ (b) Harry is correct Because there are 2 tickets with 16 on them, but only 1 ticket with 26 on it.	B1 E2 3	C.A.O. E1 for a good attempt, but does not give full details.
6. (a) 48 (b) 6 (c) $(12$ lots of 12$)+6+3$ $=153$ (d) Pupil numbers going down because $\mathrm{Y} 7<\mathrm{Y} 8$ etc	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { E1 } \\ 5 \\ \hline \end{gathered}$	C.A.O. C.A.O. For adding 12 wholes and 2 fractions of squares F.T. 'their 6 and 3'. Allow ± 2 pupils Unsupported 151 - 155 inclusive gets M1, A1.
7. (a) (i) 27 (ii) 57 (b) 43 (c) 7 h (d) $5 \times 6+3 \times 4$ $=42$ (e) $(10,40)$ $(\mathrm{a}, 4 \mathrm{a})$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \text { B1 } \\ 9 \\ \hline \end{gathered}$	C.A.O. C.A.O. B1 for the 48 OR F.T 'their 48 ' -5 C.A.O. Must be correctly substituted, $30+12$ C.A.O. C.A.O.

2011 Autumn Paper 1 (Non calculator) Wales Pilot Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments (14/11/2011) (Page 2)	
8. (a) 21 cm^{3} (b) (i) $64\left({ }^{\circ}\right) \pm 2^{\circ}$ (ii) $136 \pm 2^{\circ}$ (iii) obtuse	B1 U1 B1 B1 $\begin{gathered} \text { B1 } \\ 5 \\ \hline \end{gathered}$	C.A.O. Must be drawn at Q . C.A.O.	
9. (a) For example, $\begin{array}{r} 7 \\ 32 \begin{array}{r} \frac{237}{224} \\ \frac{23}{13} \\ 7 \text { crates } \end{array} \end{array}$ and 13 jugs left over (b) (i) $\begin{aligned} 1 / 8 \text { of } 56=7 & \text { AND } 7 \times 3 \\ & =21 \end{aligned}$ (ii) $\begin{aligned} 1 \% \text { of } 500 & =5 \text { AND } 5 \times 7 \\ & =35 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \\ \\ \text { A1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ 7 \\ \hline \end{gathered}$	Any complete valid algorithm Any valid method. Allow M C.A.O. Any valid method. Allow M C.A.O.	find $237 \div 32$ for $3 / 8 \times 56$ for $7 / 100 \times 500$
10. (a) 30 (miles) (b) 72 (minutes) (c) Before because the line is steeper (d) 1548	B1 B1 B1 B1 4	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$	
11. (a) 17:23-15:29 $=1 \text { (hour) } 54 \text { (minutes) }$ (b) Arrives Coventry 16:22 Ready to leave Coventry at $16: 22+1: 20$ $=17: 42$ Arrives Durham 21:39	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 6 \\ \hline \end{gathered}$	Accept 1:54, 1•54 Pupils who add 1h 20 m to 14 : $14: 55+1: 20=16: 15$ gets B0 Then 17:11, 18:22, 18:49, 22:	5 get B0 then mark as normal. can get M1, A1, B1.
12. (a) 2 (is a prime and is even) (b) Explanations that imply multiplying by 4 (c) $3 / 5$ is $60 \%<65 \%$	E1 E1 E1 3	Both properties of 2 not requ Along these lines Along these lines	
13. (a) Completed disc numbers 2,3 and 3,5 (b) $\frac{7}{12}$ (c) $7 / 12 \times 240$ $=140$	B1 B2 B2 M1 A1 7	B1 any 2 correct rows or columns B1 for 7/x ($x>7$) OR $\mathrm{y} / 12$ ($\mathrm{y}<12$) F.T. 'their $(b) \times 240$ ' $(\neq 1 / 2)$. A0 here if there is incorrect reduction. M1, A0 for $140 / 240$	NOTES Penalise -1 for use of words such as " 7 out of 12 ", " 7 in 12" OR " $7: 12$ ". When fraction and wrong notation seen, DO NOT penalise wrong notation.

2011 Autumn Paper 1 (Non calculator) Wales Pilot Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments (14/11/2011) (Page 3)
14. (a) $62 \cdot 64$ (b) $62 \cdot 64$ (c) $11 \cdot 6$	B1 B1 B1 3	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
15.(a) All points plotted correctly (b) Positive (c) Line of best fit with points above and below (d) Their estimate between 3500 and 4500	$\begin{gathered} \hline \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	B1 for at least 3 correct plots, or B1 if plots reversed Ignore line of best fit, Penalise joined point to point -1 Do not accept descriptions. OR FT for their incorrect line of best fit
16.(a) Correct enlargement Correct position (b) Correct reflection (c) Correct rotation H4	B2 B1 B2 B2 7	B1 for 2 points correct, or B1 for consistent but incorrect scale factor used. FT their consistent scale factor. Incorrect scale factor -1 . B1 reflection in any vertical line OR sight of $x=1$ OR reflection in $y=1$ B1 for 90° clockwise rotation about $(1,2)$, OR, 90° anticlockwise rotation about $(2,1)$
17. -5 and 13 H5	B3 3	B2 for -13 and 5 B1 for 5 and 13 OR - 5 and -13
18. (a)(i) Both folds correct (ii) Both folds correct (b) Horizontal line through the centre of the rectangle Arc radius 6 cm centre at C Correct region indicated H6	$\begin{gathered} \text { B2 } \\ \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 7 \\ \hline \end{gathered}$	B1 for showing first fold correctly B1 for showing first fold correctly Tolerance $\pm 2 \mathrm{~mm}$ Tolerance $\pm 2 \mathrm{~mm}$ FT similar area
19. (a) $3(\mathrm{x}-2)$ (b) $6 \mathrm{n}-1$ (c) $5 \mathrm{t}=\mathrm{r}+7 \quad$ OR $\mathrm{r}+7=5 \mathrm{t}$ $t=\frac{r+7}{5}$	B1 B2 B1 B1 5	C.A.O. B1 for $6 n$ Isolating the term in t F.T. equivalent difficulty $(a x+b) / c$

PAPER 2 - FOUNDATION TIER

2011 Autumn Paper 2 Wales Pilot Foundation Tier	Marks	$\begin{array}{ccc}\text { FINAL POST CONFERENCE MARK SCHEME } \\ \text { Comments } & (23 / 11 / 2011) & \text { (Page 1) }\end{array}$
$\begin{array}{ll} \hline \text { 1. (a) (i) } & \text { (85.60) } \\ & 16.8(0) \\ & 26.28 \\ & 10.32 \\ & \\ & 139 .(00) \end{array}$ (ii) $\begin{aligned} & 10 \%=(\mathfrak{£}) 13.9(0) \\ & 5 \%=(\mathfrak{£}) 6.95 \end{aligned}$ (b) $\begin{aligned} & (£) 6.75 \times 5=(£) 33.75 \\ & \text { Change }=(£) 16.25 \end{aligned}$ (c) (i) $40(\%)$ (ii) 60 (\%)	B1 B1 B1 B1 M1 A1 M1 A1 B1 B1 B1 11	C.A.O. C.A.O. F.T. their figures for one error Any valid method. F.T. from (a) Accept (£) 132.05 as evidence of a correct 5% F.T. 50 - 'their 33.75 ' F.T. 1 - 'their 40\%'
$\begin{array}{ll} \text { 2. } 920(\mathrm{~g}) & \\ 280(\mathrm{~g}) & \\ & 640(\mathrm{~g}) \end{array}$	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \\ \hline \end{gathered}$	C.A.O. C.A.O. F.T the difference of their readings provided at least B1 awarded.
3. Evidence of square counting $53-61$ inclusive 265-305 (cm^{2})	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \\ \hline \end{gathered}$	e.g. dots in the squares F.T. their area $\times 5$
4. (a) diameter tangent (b) pentagon cylinder (triangular) prism (c) (i) $(\mathrm{PQ}=) 11 \cdot 5-11 \cdot 9(\mathrm{~cm})$ (ii) Perpendicular	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \\ \text { B1 } \\ \hline \end{gathered}$	C.A.O. C.A.O. C.A.O. C.A.O. C.A.O. Allow $11 \cdot 7 \pm 2 \mathrm{~mm}$ Judgement by eye
5. (a) Value $=5 \times 9+6$ $=51$ $\text { (b) } \begin{aligned} \text { Position } & =(121-6) / 5 \\ & =23 \end{aligned}$	M1 A1 M1 A1 4	For correct substitution C.A.O. For correct substitution and division Allow embedded references to the correct answer, such as $121=5 \times 23+6$.
6. Man 5 to 7 ft OR 1.5 to 2.5 metres Man $1.5 \mathrm{~cm} \quad$ Bus $=13.5 \mathrm{~cm}$ Multiplying factor $=9$ Estimate length of bus $=$ man estimate \times factor F.T. their man estimate \times their SF ($6-12$ inc.) $=$ correct answer for their figures SC1 for answers which: (a) only give man's height as 1.5 cm and bus length as $13 \cdot 5 \mathrm{~cm} \pm 2 \mathrm{~mm}$ OR (b) a proper attempt at 'dividing' the bus length into equal parts the size of the man's height	B1 B1 M1 A1 4	F.T. their man's height estimate AND scale factors 6-12 inc. Correct units must be seen at least once to get the final A1

2011 Autumn Paper 2 Wales Pilot Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments $\quad(23 / 11 / 2011) \quad$ (Page 2)
$\begin{array}{ll} \text { 7. } & \text { A }(-3,5) \\ \text { B }(5,-2) \\ & C(-4,-5) \end{array}$	B1 B1 B1 3	Unambiguous plotted points or letters only are enough. Reversed coordinates get 0 every time.
8. Correct use of the $£ 37$ for the first day’s hire. $\begin{array}{r} 92.5 / 18.5 \\ =5 \end{array}$ Hired for 6 days	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 4 \\ \hline \end{gathered}$	(£)92.5(0) left after day 1 (129.50-37) For a correct method for finding the extra days F.T. if rounded up to a whole number F.T. 'their 5 ' +1 rounded up to a whole number
9. (a) (i) $\mathrm{t}+6$ (ii) 10 w (iii) $x-5$ (b) $\mathrm{V}=20+10 \times 9$ $=110$	$\begin{gathered} \text { B1 } \\ 5 \end{gathered}$	C.A.O. Ignore cm Accept $10 \times$ w, w10. Ignore kg Correct substitution C.A.O.
10. (a) 1300×1.55 $=(\$) 2015$ (b) $363 / 1.65$ $=(\mathfrak{f}) 220$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
11. (a) $21 \quad 23 \quad 24 \frac{27}{2} 334145$ $=30$ (b) 24 (c) (i) Sum of the numbers (248) Sum/8 $=31$ (ii) $248-7 \times 29$ $=45$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 8 \end{gathered}$	For a list (of 7 or 8 correct numbers) in ascending or descending order OR for averaging the middle 2 numbers C.A.O. C.A.O. For attempt to add the numbers For dividing a number in the range $200-300$ inc by 8 . C.A.O. F.T. 'their 248 '
12. (a) $10 x-4$ (b) (i) 6 (ii) Correct line	B2 B1 B2 5	B1 for 10x OR -4 in an expression of the form ax $\pm b$ ($a \neq 0$) $10 x+-4$ gets B1 only B1 for any 2 correct plots (within the 2 mm square) (F.T. their (b)(i)) Must be the correct line for B2.
13. Strategy e.g. trying 6 ones and realising other number is 11 which is not single digit. Equal numbers are 2 Other number $=5$	$\begin{gathered} \text { S1 } \\ \\ \text { B1 } \\ \text { B1 } \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \text { C.A.O. } \\ & \text { C.A.O. } \end{aligned}$
14. Length $=18 / 2$ $\begin{array}{ll} & =9 \\ \text { Breadth }=18 / 3 & =6\end{array}$ Area of rectangle $=9 \times 6=54$ OR 18×15 Area of shape $54 \times 5=270$ cm^{2}	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { U1 } \\ 6 \end{gathered}$	For either length or breadth method C.A.O. C.A.O. F.T. their length and breadth if M1 awarded F.T. their length and breadth if M1 awarded

PAPER 1 - HIGHER TIER

GCSE Higher Tier Wales November 2011. Paper 1	Mark	Comments FINAL 18/11/11
1.(a) All points plotted correctly (e) Positive (f) Line of best fit with points above and below (g) Their estimate between 3500 and 4500	$\begin{gathered} \text { B2 } \\ \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 5 \end{gathered}$	B1 for at least 3 correct plots, or B1 if plots reversed Ignore line of best fit, Penalise joined point to point -1 Do not accept descriptions. OR FT for their incorrect line of best fit
2.(a) $360 / 6$ or equivalent full method (b) $\begin{aligned} & \mathrm{p}=128^{\circ} \\ & \mathrm{q}=52^{\circ} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ 4 \end{gathered}$	SC1 if reversed
3.(a) \qquad (b) 10×4 $=40\left(\mathrm{~cm}^{2}\right)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { U1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \\ \hline \end{gathered}$	Attempt $1 / 2$ base x height seen, e.g. 6×5
4.(a) Correct enlargement Correct position (b) Correct reflection (c) Correct rotation	$\begin{gathered} \text { B2 } \\ \\ \text { B1 } \\ \text { B2 } \\ \\ \text { B2 } \\ 7 \\ \hline \end{gathered}$	B1 for 2 points correct, or B1 for consistent but incorrect scale factor used. (Incorrect scale loses 1 mark only throughout) FT their consistent scale factor. B1 reflection in any vertical line OR sight of $x=1$ OR reflection in $\mathrm{y}=1$ B1 for 90° clockwise rotation about $(1,2)$, OR, 90° anticlockwise rotation about $(2,1)$
5. -5 and 13	$\begin{gathered} \text { B3 } \\ 3 \end{gathered}$	B2 for -13 and 5 B1 for 5 and 13 OR -5 and -13
6.(a)(i) Both folds correct (ii) Both folds correct (b) Horizontal line through the centre of the rectangle Arc radius 6 cm centre at C Correct region indicated	$\begin{gathered} \text { B2 } \\ \text { B2 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ 7 \\ \hline \end{gathered}$	B1 for showing first fold correctly B 1 for showing first fold correctly. SC 1 if done in 3 folds Tolerance $\pm 2 \mathrm{~mm}$ Tolerance $\pm 2 \mathrm{~mm}$ FT similar area
7.(a) $600000 / 600000 \times 100$ or equivalent (b) $40 / 100 \times 120$ (£)48	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ 4 \\ \hline \end{gathered}$	Method which could lead to a correct answer CAO. A final answer of 168 is M1, A0
8.(a) 3 values which could lead to simple calculations Correct evaluation for their figures (b) 340 (c) $5 / 16$ (d)(i) Method of finding primes $\frac{2,2,2,3,3,5}{2^{3}} \times 3^{2} \times 5$ (ii) 10 or 2×5 (e) $1 / 0.9$ or $1 /(9 / 10)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	Not all 3 need to be different to those given (Common responses include 12 here) Or 0.3125 or equivalent, not fraction/fraction At least two correct primes before $2^{\text {nd }}$ error FT "their" primes, needs to have at least 1 index >1 FT for equivalent level of difficulty ISW. Accept 1.1
9.(a) $y=($ any value $) x$ (b) Strategy, e.g. a sketch with some values marked Realising $\mathrm{c}=4$ Method to find gradient, e.g. sight of $4 / 2$ or diff. $y /$ diff. x $y=2 x+4$	B1 M1 M1 M1 A1 5	$\text { Accept } y=\mathrm{m} x, x=0, y=0 x+0, y=0$ Accept alternate methods
$10.4 .6 \times 10^{4}, 8.1 \times 10^{4}, 9(.0) \times 10^{4}, 9(.0) \times 10^{4}, 1.5 \times 10^{5}$ All lengths 1000 (feet) Valid comment on length and weight, accuracy	$\begin{gathered} \hline \text { B3 } \\ \text { B1 } \\ \text { E2 } \\ 6 \\ \hline \end{gathered}$	B2 for any 4, B1 for any 2 or 3 correct Accept 1×10^{3} E1 comment on length or weight, or looks at rounded comparisons length \& weight (Yes)
11. (a) $1 / 6 \times 1 / 6$ $=1 / 36$ (b) (i) $2 / 6$ or $4 / 6$ correctly placed (Red) $1 / 6$ or $5 / 6$ correctly placed (Black) $2 / 6,4 / 6 ; 1 / 6,5 / 6 ; 1 / 6,5 / 6$ all correct (ii) $2 / 6 \times 1 / 6=$ $2 / 36 \quad \text { (or } 1 / 18 \text {) }$	M1 A1 B1 B1 B1 M1 A1 7	Ignore incorrect cancelling throughout (a). FT their probabilities, not $1 / 2$ and <1

GCSE Higher Tier Wales November 2011. Paper 1	Mark	Comments FINAL 18/11/11
12.(a) A, C, D and B All 4 reasons correct (b) Three lines $3 x+y=12, x=1$ and $y=2$ Correct region	$\begin{gathered} \text { B3 } \\ \text { E3 } \\ \text { B2 } \\ \text { B1 } \\ 9 \end{gathered}$	B2 for any two correct, B1 for any one correct E2 for any two correct, E1 for any one correct B1 for any two correct CAO
13.(a) 31 to 35 (b) (8), $34,44,58,60$ (c) Correct cumulative frequency diagram, points plotted and joined with a curve or straight lines (d) (i) Approximately 25 (ii)Intention to subtract horiz. readings for vert. 45 \& 15 Interquartile range form their diagram	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { B2 } \\ \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 7 \end{gathered}$	FT from cumulative (c). B1points plotted but not joined, correct diagram with 1 point incorrectly plotted, or correct apart from being a 0.5 horizontal translation. FT their cumulative frequency diagram in (d) (Approximately 31-22=9)
$\begin{aligned} & \text { 14.(a) } y=\mathrm{k} / \mathrm{x}^{2} \text { OR } \mathrm{y} \alpha 1 / \mathrm{x}^{2} \\ & 2=\mathrm{k} / 5^{2} \text { OR } \mathrm{k}=50 \\ & \mathrm{y}=50 / \mathrm{x}^{2} \text { seen or implied in further work } \\ & \text { (b)(i) } 50 / 4(=12.5) \\ & \text { (ii) } \mathrm{x}^{2}=50 / 0.5 \text { OR } \mathrm{x}^{2}=100 \\ & \mathrm{x}=(\pm) 10 \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 6 \end{gathered}$	FT non linear only throughout this question $\mathrm{CAO}, \text { not FT }$
15.(a)(i) $27 \mathrm{x}^{15} \mathrm{y}^{6}$ (ii) $3 y^{-2}$ OR $3 / y^{2}$ (b) $(2 x+9)(2 x-9)$ $x=-9 / 2$ and $x=9 / 2$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \\ & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for any two of the three parts B1 for one stage of correct algebra manipulation with y terms Penalise -1 only if B2 but ' x ' remains in the expression B1 for (2x....9)(2x....9) CAO
$\text { 16.(a) } 142^{\circ}$ Cyclic quadrilateral (b) 76° Angle at the centre is twice angle at circumference (c) 49° (Angle semi circle and) alternate segment theorem	$\begin{gathered} \text { B1 } \\ \text { E1 } \\ \text { B1 } \\ \text { E1 } \\ \text { B1 } \\ \text { E1 } \\ 6 \end{gathered}$	Depends on B1 Depends on B1. OR Isosceles triangle and straight line Depends on B1. OR equivalent
17.(a) Strategy, finding area $\begin{aligned} & 1 \times 20+2.2 \times 10+2.4 \times 10+1.7 \times 20 \\ & 100 \end{aligned}$ (b) 30 (metres)	M1 M1 A1 B1 4	Any single area is sufficient
18. Attempt to multiply by $(x+2)(2 x+3)$ OR as common denominator $\begin{gathered} 2(x+2)+1(2 x+3)=3(2 x+3)(x+2) \\ 2 x+4+2 x+3 \\ =3\left(2 x^{2}+7 x+6\right) \\ 6 x^{2}+17 x+11=0 \end{gathered}$ $(6 x+11)(x+1)(=0)$ or simplified from substitution into quadratic formula $x=-1 \text { and } x=-11 / 6$	M1 A1 M1 M1 A1 M2 A1 8	Common denominator needs brackets unless they are implied in future working FT equivalent level of difficulty. Does not depend on previous Must equate to zero (maybe implied later) FT equivalent level of difficulty M1 for reasonable attempt to factorise, e.g. $6 x, x, 1,11$ found but misplaced, or correct substitution into quadratic formula

PAPER 2 - HIGHER TIER

GCSE Higher Tier Wales November 2011. Paper 2	Mark	Comments	Final 28/11/11
7.(a) One correct evaluation			
$3 \leq x \leq 4$	B1	$x \quad 2 x^{3}+x-100$	
		3 -43	
2 correct evaluations,		$3.1-37.318$	
$3.6 \leq x \leq 3.7$, or 3.55 and 3.65 , one either side of 0	B1	$3.2-31.264$	
		$3.3-24.826$	
2 correct evaluations, $3.6 \leq x \leq 3.65$, one either side of 0	M1	$3.4-17.992$	
		$3.5-10.75$	
OR correct evaluation of 3.65 if previous B1 awarded		3.55	-6.97225
		$3.6-3.088$	
3.6 No calculations shown: accept "too high",">", etc.	A1	3.65	0.90425
		3.75	
		$3.8 \quad 13.544$	
		$3.9 \quad 22.538$	
		432	
(b) Overall correct complete method	B1		
First variable's value	B1		
Second variable's value	B1	FT their first variable $\mathrm{x}=8$ or $\mathrm{y}=-3$	
	7		
$\begin{aligned} \begin{aligned} \text { 8.(a) } 2, \mathrm{~mm}^{2} \\ \text { (b) } 4 \pi 2.8^{3} / 3\end{aligned} & 3, \mathrm{~cm}^{3} \\ & =91.9\left(523 \ldots \mathrm{~cm}^{3}\right) \text { or } 92\left(\mathrm{~cm}^{3}\right)\end{aligned}$	B2	B1 for any 2 correct entries	
	M1		
	A1		
9.(a) $\begin{aligned} d^{2} & =4 g / 3 \\ d & =(\pm) \sqrt{ }(4 g / 3) \end{aligned}$ (b) $\begin{gathered} y(5 x+2)=3 x+4 \\ 5 x y+2 y=3 x+4 \\ 5 x y-3 x=4-2 y \\ x(5 y-3)=4-2 y \\ x=\frac{4-2 y}{5 y-3} \end{gathered}$	M1		
	A1	Clearly square root of the entire right hand side Expand brackets FT until $2^{\text {nd }}$ error for equivalent level of difficulty Collect terms Factorise	
	B1		
	7		
$\text { 10.(a) } \begin{aligned} x^{2}-3 x+6 x & -18 \\ & =x^{2}+3 x-18 \end{aligned}$	B1	($\mathrm{x}^{2}-18$ gets B0) \quad FT until $2^{\text {nd }}$ error	
	B1		
(b) $3(x+4)$ OR $3 x+12$	B1	Mark final answer	
(c) $(x-10)(x-1)$ (d) $2(x+2)\{2(x+2)+1\}$ OR $(x+2)\{4(x+2)+2)$	B2	B1 for ($x \ldots 10$)($x \ldots 1$). If B2 penalise -1 further inappropriate work	
	B1	FT til ${ }^{\text {nd }}$ error OR correct full expansion with attempt to factorise	
$\text { (d) } \begin{aligned} 2(x+2)\{2(x+2)+1\} & \text { OR }(x+2)\{4(x+2)+2) \\ & =2(x+2)(2 x+5) \end{aligned}$	B1	$(x+2)(4 x+10)$ gets first B1 onl	
$\begin{aligned} &(\mathrm{e}) \\ & x=\left\{4 \pm \sqrt{ }\left(4^{2}-4 \times 7 \times-17\right)\right\} /(2 \times 7) \\ & \quad x=(4 \pm \sqrt{492)} / 14\end{aligned}$	M1	Allow 1 slip in substitution	
	A1		
1.9 and -1.3	A1	CAO	
	10		
$\begin{aligned} & \text { 11. } 4 \mathrm{~s}+3 \mathrm{~m}=622 \quad \text { OR } 690-622(=2 \text { square tiles }) \\ & 6 \mathrm{~s}+3 \mathrm{~m}=690 \quad \text { OR } 68 / 2(=1 \text { square tile }) \\ & \text { Length rectangle } 162(\mathrm{~mm}) \end{aligned}$	B1		
	B1		
	B2	B1 for square tile 34 with attempt to calculate length of the rectangular tile, or B1 for 1 numerical error in correct method provided previous B2 a	
	4		
12.(a) Sight of tangent at $t=12$ Difference vertical / difference horizontal Reasonable gradient for their tangent (b) Using trapezium rule or evidence of sum of areas. Correct expression for total area. 470 (c) Distance (as (b)) metres (or m)	B1		
	M1		
	A1		
	M1	At least one correct area	
	A1	$40+160+270$	
	A1		
	B1	FT from (b). Units must be given	
	7		
13. 35.15 and 35.25	B1		
299.7 and 300.3	B1		
$\begin{aligned} \text { Greatest av. Speed } & =\text { Greatest dist. } / \text { Least time } \\ & =8.54(3385 \ldots \mathrm{~m} / \mathrm{s}) \end{aligned}$	M1	$300.3 / 35.15$, FT their bounds but not 35.2 and 300	
	A1		
$\begin{aligned} \text { Least av. Speed } & =\text { Least dist. } / \text { Greatest time } \\ & =8.5(021 \ldots \mathrm{~m} / \mathrm{s}) \end{aligned}$	M1	299.7/35.25, FT their bounds but not 35.2 and 300	
	A1		
Explanation	E1	Award E1 if only the two relevant calculations shown and no other If the 2 relevant calculations shown (amongst others), but not indicated as least and greatest then award M1 A0 M1 A0 E0	

GCSE Higher Tier Wales November 2011. Paper 2	Mark	Comments Final 28/11/11
14. Strategy, e.g. Appropriate use of Pythagoras' Theorem or appropriate trial and improvement or trigonometry	S1	Accept sight of $16^{2}+9^{2}$
$37^{2}=(16 x)^{2}+(9 x)^{2} \quad$ (no brackets M1)	M2	2 trials, ratio 1: w correct (M1 for 1 trial)
$\left(\mathrm{x}^{2}=\right)$ 1369/337 $(=4.0623 \ldots)$	A1	Interpretation of trial above or below
($\mathrm{x}=$) 2(.0155...)	A1	Interpretation of trial above AND below
Length $32(.25 .$. inches) and Width 18.(14..inches)	A1	32 (inches) and 18(inches)
OR Strategy S1		Answers 32, 18 no working SC2
$\tan x=16 / 9 \quad$ or tany $=9 / 16 \quad$ M1		Answers 32.25, 18.14 no working B6
$x=60.6\left(42 . .{ }^{\circ}\right) \quad y=29.3\left(57 . .{ }^{\circ}\right) \quad A 1$		
Appropriate trig to find length M1		Angles are 60.6... and 29.357...
Appropriate trig to find width M1 L 32(.25.. inches) and W 18.(14..inches) A1	6	
15.(a) $(0.50+0.35) \times(0.50+0.35)$	M1	
$=0.72(25)$ or 72(.25)\%	A1	
(b) $1-\mathrm{P}\left(\right.$ no cumin) OR $\quad \mathrm{P}\left(\mathrm{CC}^{\prime}\right)+\mathrm{P}\left(\mathrm{C}^{\prime} \mathrm{C}\right)+\mathrm{P}(\mathrm{CC})$	S1	OR equivalent full list
$1-0.65 \times 0.65$ OR $0.35 \times 0.65+0.65 \times 0.35+0.35 \times 0.35$	M1	
0.5775 or 57.75%	$\begin{gathered} \text { A1 } \\ 5 \end{gathered}$	Accept rounded or truncated from correct working
16. Overall strategy (1/2absinC \& cos rule)	B1	
$44.6=1 / 2 \times 6.4 \times \mathrm{AC} \times \sin 74$	M1	
$\mathrm{AC}=14.499173 \ldots . . \mathrm{cm})$	A1	
$\mathrm{BC}^{2}=6.4^{2}+\mathrm{AC}^{2}-2 \times 6.4 \times \mathrm{AC} \times \cos 74$	M1	FT their AC
$\mathrm{BC}^{2}=200 .(05 \ldots)$	A1	
$\mathrm{BC}=14(.14 \ldots \mathrm{~cm})$	A1 6	

GCSE Mathematics - Wales Pilot MS - November 2011

WJEC
245 Western Avenue Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

