

GCSE MARKING SCHEME

MATHEMATICS - WALES PILOT

NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - WALES PILOT. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
Mathematics Paper 1 - Foundation Tier	1
Mathematics Paper 2 - Foundation Tier	4
Mathematics Paper 1 - Higher Tier	7
Mathematics Paper 2 - Higher Tier	9

PAPER 1 - FOUNDATION TIER

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier	Marks	(14/11/2011) Comments (Page 1)
1. (a) (i) (£) 46705	B1	C.A.O.
(ii) nine thousand four hundred and seventeen (pounds)	B1	C.A.O.
(b) 46 64 406 460 604 640	B1	C.A.O.
(c) (i) 102 (ii) 28	B1 B1 5	C.A.O. C.A.O. Allow embedded answers e.g. $28 + 85 = 113$
2. (a) Lines Curve	B1 B1	C.A.O. C.A.O.
(b) Drawing of a rectangle or rhombus Rectangle OR Rhombus	B1 B1	
(c) Drawing of an isosceles triangle Isosceles	B1 B1 6	
3. (a) (i) 2578	B1	C.A.O.
(ii) 8725	B1	C.A.O.
(b) (i) 4740	B1	C.A.O.
(ii) 4700	B1	C.A.O.
(c) 40/5	M1	OR other correct method
= 8	A1 6	MR-1 for misread of two $\pounds 20$ as one $\pounds 20$.
4. 1 litre	B1	C.A.O.
60kg	B1	C.A.O.
340km 600cm ²	B1	C.A.O.
600cm	B1 4	C.A.O.
 5. (a) 1/50 (b) Harry is correct Because there are 2 tickets with 16 on them, but only 1 ticket with 26 on it. 	B1 E2	C.A.O. E1 for a good attempt, but does not give full details.
	3	
6. (a) 48 (b) 6	B1 B1	C.A.O. C.A.O.
(c) $(12 \text{ lots of } 12) + 6 + 3$	M1	For adding 12 wholes and 2 fractions of squares
= 153	A1	F.T. 'their 6 and 3'. Allow ± 2 pupils Unsupported 151 – 155 inclusive gets M1, A1.
(d) Pupil numbers going down because $Y7 < Y8$ etc	E1 5	
7. (a) (i) 27	B1	C.A.O.
(ii) 57	B1	C.A.O.
(b) 43	B2	B1 for the 48 OR F.T 'their 48' – 5
(c) 7h	B1	C.A.O.
(d) $5 \times 6 + 3 \times 4 = 42$	B1 B1	Must be correctly substituted, 30 + 12
(e) (10, 40)	B1	C.A.O.
(a, 4a)	B1	C.A.O.
	9	

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier	Marks	Comments (14/11/2011) (Page 2)
8. (a) 21 cm^3	B1 U1	C.A.O.
(b) (i) $64(^{\circ}) \pm 2^{\circ}$	B1	
(ii) $136 \pm 2^{\circ}$	B1	Must be drawn at Q.
(iii) obtuse	B1 5	C.A.O.
9. (a) For example, 7	M1	Any complete valid algorithm to find 237÷32
32)237 224 13		
7 crates and 13 jugs left over	A1 A1	
(b) (i) $1/8 \text{ of } 56 = 7$ AND $7 \times 3 = 21$	M1 A1	Any valid method. Allow M1 for $3/8 \times 56$ C.A.O.
(ii) 1% of 500 = 5 AND 5×7 = 35	M1 A1 7	Any valid method. Allow M1 for $7/100 \times 500$ C.A.O.
10. (a) 30 (miles)	B1	C.A.O.
(b) 72 (minutes)	B1	C.A.O.
(c) Before because the line is steeper	B1	C.A.O.
(d) 1548	B1 4	C.A.O.
11. (a) $17:23 - 15:29 = 1$ (hour) 54 (minutes)	M1 A1	Accept 1:54, 1·54
(b) Arrives Coventry 16:22 Ready to leave Coventry at $16:22 + 1:20$ = 17:42	B1 M1 A1	Pupils who add 1h 20m to 14:55 get B0 then mark as normal. 14:55 + 1:20 = 16:15 gets B0 Then 17:11, 18:22, 18:49, 22:30 can get M1, A1, B1.
Arrives Durham 21:39	B1 6	
12. (a) 2 (is a prime and is even)	E1	Both properties of 2 not required
(b) Explanations that imply multiplying by 4	E1	Along these lines
(c) $3/5$ is $60\% < 65\%$	E1 3	Along these lines
13. (a) Completed disc numbers 2, 3 and 3, 5 (7) 10 11 12 (5) 8 (9) 10 3 6 7 $82 5 6 73$ (4) 5	B1 B2	B1 any 2 correct rows or columns
(b) $\frac{7}{12}$	B2	B1 for 7/x (x>7) OR y/12 (y<12) $\frac{\text{NOTES}}{\text{Penalise} -1}$ for use of words such as "7 out of 12", "7 in 12" OR "7:12".
(c) $7/12 \times 240 = 140$	M1 A1 7	F.T. 'their (b) $\times 240'$ ($\neq \frac{1}{2}$).When fraction and wrong notation seen, DO NOT penalise wrong notation.M1, A0 for 140/240

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier	Marks	Comments (14/11/2011) (Page 3)
14. (a) 62·64	B1	C.A.O.
(b) 62·64	B1	C.A.O.
(c) 11.6	B1	C.A.O.
	3	
15.(a) All points plotted correctly	B2	B1 for at least 3 correct plots, or B1 if plots reversed
	DI	Ignore line of best fit, Penalise joined point to point -1
(b) Positive	B1	Do not accept descriptions.
(c) Line of best fit with points above and below	B1	
(d) Their estimate between 3500 and 4500	B1	OR FT for their incorrect line of best fit
	5 B2	
16.(a) Correct enlargement	B2	B1 for 2 points correct, or B1 for consistent but incorrect scale
	D1	factor used.
Correct position	B1	FT their consistent scale factor. Incorrect scale factor –1.
(b) Correct reflection	B2	B1 reflection in any vertical line OR sight of $x=1$
		OR reflection in y=1
(c) Correct rotation	B2	B1 for 90° clockwise rotation about (1,2),
H4	7	OR, 90 [°] anticlockwise rotation about (2,1)
175 and 13	B3	B2 for -13 and 5
		B1 for 5 and 13 OR -5 and -13
Н5	3	
18. (a)(i) Both folds correct	B2	B1 for showing first fold correctly
(ii) Both folds correct	B2	B1 for showing first fold correctly
(b) Horizontal line through the centre of the rectangle	B1	Tolerance $\pm 2 \text{ mm}$
Arc radius 6cm centre at C	B1	Tolerance $\pm 2 \text{ mm}$
Correct region indicated	B1	FT similar area
Н6	7	
19. (a) $3(x-2)$	B1	C.A.O.
(b) 6n – 1	B2	B1 for 6n
(c) $5t = r + 7$ OR $r + 7 = 5t$	B1	Isolating the term in t
r+7	B1	F.T. equivalent difficulty (ax+b)/c
$t = \frac{r+7}{5}$	5	

PAPER 2 - FOUNDATION TIER

2011 Autumn Paper 2		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier	Marks	Comments (23/11/2011) (Page 1)
1. (a) (i) (85.60)		
16.8(0)	B1	
26.28	B1	C.A.O.
10.32	B1	C.A.O.
139.(00)	B1	F.T. their figures for one error
(ii) $10\% = (\pounds)13.9(0)$	M1	Any valid method. F.T. from (a)
$5\% = (\pounds) 6.95$	A1	Accept (£) 132.05 as evidence of a correct 5%
(b) (£) 6.75×5	M1	
= (£) 33.75	A1	
$Change = (\pounds) \ 16.25$	B1	F.T. 50 – 'their 33.75'
(c) (i) 40(%)	B1	
(ii) 60 (%)	B1	F.T. 1 – 'their 40%'
	11	
2. 920 (g)	B1	C.A.O.
280 (g)	B1	C.A.O.
640 (g)	B1	F.T the difference of their readings provided at least B1
		awarded.
	3	
3. Evidence of square counting	M1	e.g. dots in the squares
53-61 inclusive	A1	
265 - 305 (cm ²)	B1	F.T. their area \times 5
	3	
4. (a) diameter	B1	C.A.O.
tangent	B1	C.A.O.
(b) pentagon	B1	C.A.O.
cylinder	B1	C.A.O.
(triangular) prism	B1	C.A.O.
(c) (i) $(PQ =)$ 11.5 - 11.9 (cm)	B1	Allow $11.7 \pm 2 \text{ mm}$
(ii) Perpendicular	B1	Judgement by eye
	7	
5. (a) Value = $5 \times 9 + 6$	M1	For correct substitution
= 51	A1	C.A.O.
(b) Position = $(121 - 6)/5$	M1	For correct substitution and division
= 23	Al	Allow embedded references to the correct answer, such as
-		$121=5\times23+6$.
	4	
6. Man 5 to 7 ft OR 1.5 to 2.5 metres	B1	
Man 1.5 cm Bus = 13.5 cm		
Multiplying factor $= 9$	B1	Unsupported answers marked as
Estimate length of bus = man estimate \times factor	M1	fallawa
F.T. their man estimate \times their SF (6 – 12 inc.)		feet 30 45 63 84
= correct answer for their figures	A1	SC1 M1, A1 (inc) SC1
SC1 for answers which:		metres a to r
(a) only give man's height as 1.5cm and bus length as		metres 9 13.5 22.5 30
13.5 cm ± 2 mm		
OR (b) a proper attempt at 'dividing' the bus length into		F.T. their man's height estimate AND scale factors 6–12 inc.
equal parts the size of the man's height		Correct units must be seen at least once to get the final A1
	4	Control units must be seen at reast once to get the mult Al

2011 Autumn Paper 2		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier	Marks	Comments (23/11/2011) (Page 2)
7. A (-3, 5)	B1	Unambiguous plotted points or letters only are enough.
B (5, -2)	B1	Reversed coordinates get 0 every time.
C (-4, -5)	B1	
	2	
8. Correct use of the £37 for the first day's hire.	3 B1	$(\pounds)92.5(0)$ left after day 1 $(129.50 - 37)$
92.5/18.5	M1	For a correct method for finding the extra days
= 5	A1	F.T. if rounded up to a whole number
Hired for 6 days	B1	F.T. 'their $5' + 1$ rounded up to a whole number
	4	
9. (a) (i) t + 6	B1	C.A.O. Ignore cm
(ii) 10w	B1	Accept 10×w, w10. Ignore kg
(iii) x – 5	B1	
(b) $V = 20 + 10 \times 9$	B1	Correct substitution
$(0) v = 20 + 10^{-9}$ = 110	B1 B1	C.A.O.
110	5	
10. (a) 1300×1.55	M1	
= (\$) 2015	A1	C.A.O.
(b) 363/1.65	M1	
$= (\pounds) 220$	Al	C.A.O.
(~) 220	4	
11. (a) 21 23 24 <u>27 33</u> 34 41 45	M1	For a list (of 7 or 8 correct numbers) in ascending or
2 = 30	A1	descending order OR for averaging the middle 2 numbers C.A.O.
(b) 24	B1	C.A.O.
(c) (i) Sum of the numbers (248)	M1	For attempt to add the numbers
Sum/8	ml	For dividing a number in the range $200 - 300$ inc by 8.
= 31	A1	C.A.O.
(ii) 248 – 7×29	M1	F.T. 'their 248'
(ii) $248 - 7 \times 29 = 45$	A1	r.1. tileli 248
- 45	8	
12. (a) 10x – 4	B2	B1 for 10x OR –4 in an expression of the form $ax\pm b$ ($a\neq 0$)
	- ·	10x + 4 gets B1 only
(b) (i) 6	B1	
(ii) Correct line	D2	D1 for any 2 correct plate (within the lower square) (ET their
(ii) Correct line	B2	B1 for any 2 correct plots (within the 2mm square) (F.T. their (b)(i))
		(b)(i)) Must be the correct line for B2.
	5	
13. Strategy e.g. trying 6 ones and realising other	S1	
number is 11 which is not single digit.		
Equal numbers are 2	B1	C.A.O.
Other number = 5	B1	C.A.O.
	3	
14. Length = $18/2$	M1	For either length or breadth method
= 9	A1	C.A.O.
Breadth = $18/3 = 6$	B1	C.A.O.
Area of rectangle = $9 \times 6 = 54$ OR 18×15	B1	F.T. their length and breadth if M1 awarded
Area of shape $54 \times 5 = 270$	B1	F.T. their length and breadth if M1 awarded
cm ²	U1	
	6	

2011 Autumn Pap	er 2		FINAL POST CONFERENCE MARK SCHEME
Wales Pilot Foundation Tier		Marks	Comments (23/11/2011) (Page 3)
15. (a) $6x - 7 = 8$ OR $24x - 7 = 8$		B1	F.T. until 2 nd error
	$\kappa = 60$	B1	
$x = 15/6 \text{ ISW} \qquad x$	x = 60/24 ISW (=2 ¹ / ₂)	B1	
(b) $4x < 12$		B1	
x < 12/4 ISW (= 3)		B1	
(c) m^7		B1 6	C.A.O.
16.(a) (i) 30/200 ISW or 0.15 or 150	%	B1	Need not be a fraction. (Accept 58/200 + 78/200 as M1)
(ii) 50 + 78		M1	ISW. Do not penalise poor notation a 2^{nd} time
128/200 or equivalent fraction	on, or 0.64 or 64%	A1	Do not accept 78
(a) 77 to 05		D1	Accept mid-points uniformly spaced, irrespective of $(0,0)$
(c) 77 to 95		B1	FT their scales if possible
(d) Suitable uniform scales (with axe	s labelled)	B1	B1 for frequency polygon with one error in plotting, or for a
Correct frequency polygon		B1 B2	translated polygon, or correct points plotted but not joined
1 1 1 10			with straight lines.
			Ignore frequency diagram if polygon seen.
H2		7	
17.(a) B Line	Domestic		
	.32×2400	M1	M1 for idea $\times 2400$ ignoring place value
)271.68	A1	OR in pence. If units are given they must be correct
	$5.82 \times (365 \pm 1)$	M1	Allow as a method for their number of days
)57.74(3)	Al	[364] $(\pounds)54.85$ $(\pounds)57.58$ [366] $(\pounds)55.15/16$ $(\pounds)57.90$
)37.77(3)		If units are given they must be correct
276.24 + 55.0(1) 27	71.68+57.74	M1	
(£)331.24/5 (£)329.42	A1	[364] (£)331.09 (£)334.26 [366] (£)331.39/40 (£)334.58
	,		Must be consistent place value. FT provided M2 awarded Or equivalent, but place value must be correct
Choice with reason, e.g. Domestic be	cause cheaper or	E1	of equivalent, but place value must be contect
Either as not much difference	euuse eneuper, or	LI	
(b) Realising that VAT is not going t	o alter which is more	E1	
expensive, both still similar			
НЗ		8	
18. Any correct 12% of a value used	in workings	B1	OR M2 for 600 x 0.88 ² (M1 for 600x0.88)
600 - 12% of $600 (= 600 - 72)$		M1	FT their 72
528 – 12% of 528 (= 528 – 63.36		M1	
(£) 464.6	4	A1	CAO. Penalise extra working –1
H1c		4	<i>Appreciate: Possible B1 and SC1 for (£)752.64</i> <i>Simple depreciate: Possible B1 and M1</i>
19. Area photo = $\pi \times 4^2$		M1	
$= 50(.265 \text{ cm}^2)$		A1	Allow 50.24 – 50.27
Area frame = 8×8 (= 64 cm ²)			
		B1	
Area frame = 8×8 (= 64 cm ⁻) Strategy, area frame – area photo $13.7(cm^2)$ or 14 (cm ²)		M1 A1	For the idea, FT their areas for M1 only CAO, allow 13.73 – 13.76

PAPER 1 - HIGHER TIER

GCSE Higher Tier Wales November 2011. Paper 1	Mark	Comments FINAL 18/11/11
1.(a) All points plotted correctly	B2	B1 for at least 3 correct plots, or B1 if plots reversed
r.(a) rin points protoet concerny	52	Ignore line of best fit, <i>Penalise joined point to point -1</i>
(e) Positive	B1	Do not accept descriptions.
(f) Line of best fit with points above and below	B1	1 1
(g) Their estimate between 3500 and 4500	B1	OR FT for their incorrect line of best fit
	5	
2.(a) 360/6 or equivalent full method	M1	
60 ⁽⁰⁾	A1	
(b) $p = 128^{\circ}$	B1	
q = 52°	B1 4	SC1 if reversed
3.(a) $\frac{1}{2} \times 12 \times 5$	4 M1	Attempt $\frac{1}{2}$ base x height seen, e.g. 6×5
3.(a) = 30	A1	Auchipt /2 base x height seen, e.g. 6× 5
cm ²	U1	
(b) 10×4	M1	
$= 40 (cm^2)$	A1	
	5	
4.(a) Correct enlargement	B2	B1 for 2 points correct, or B1 for consistent but incorrect scale
	DI	factor used. (Incorrect scale loses 1 mark only throughout)
Correct position	B1 B2	FT their consistent scale factor.
(b) Correct reflection	B2	B1 reflection in any vertical line OR sight of x=1 OR reflection in y=1
(c) Correct rotation	B2	B1 for 90° clockwise rotation about (1,2),
	7	$OR = 90^{\circ}$ anticlockwise rotation about (1,2),
55 and 13	B3	OR, 90 ⁰ anticlockwise rotation about (2,1) B2 for -13 and 5
5. 5 unu 15	3	B1 for 5 and 13 OR -5 and -13
6.(a)(i) Both folds correct	B2	B1 for showing first fold correctly
(ii) Both folds correct	B2	B1 for showing first fold correctly. SC1 if done in 3 folds
(b) Horizontal line through the centre of the rectangle	B1	Tolerance $\pm 2 \text{ mm}$
Arc radius 6cm centre at C	B1	Tolerance ± 2 mm
Correct region indicated	B1	FT similar area
	7	
7.(a) $600000/600000 \times 100$ or equivalent	M1	Method which could lead to a correct answer
100 (%)	A1	
(b) $40/100 \times 120$	M1	
(£)48	A1	CAO. A final answer of 168 is M1, A0
	4	
8.(a) 3 values which could lead to simple calculations Correct evaluation for their figures	M1 A1	Not all 3 need to be different to those given
(b) 340	B1	(Common responses include 12 here)
(c) 5/16	B1	Or 0.3125 or equivalent, not fraction/fraction
(d)(i) Method of finding primes	M1	At least two correct primes before 2^{nd} error
2,2,2,3,3,5	A1	1
$2,2,2,3,3,5 \\ 2^{3} \times 3^{2} \times 5$	B1	FT "their" primes, needs to have at least 1 index>1
(ii) 10 or 2×5	B1	FT for equivalent level of difficulty
(e) $1/0.9$ or $1/(9/10)$	M1	
10/9	A1	ISW. Accept 1.1
0 (a) $w = (am walve)w$	10 D1	Account $u = mu$ $u = 0$ $u = 0$ $u = 0$
9.(a) $y=(any value)x$ (b) Strategy e.g. a sketch with some values marked	B1 M1	Accept $y=mx$, $x = 0$, $y = 0x + 0$, $y = 0$ Accept alternate methods
(b) Strategy, e.g. a sketch with some values marked Realising c = 4	M1 M1	Accept anemate memous
Method to find gradient, e.g. sight of $4/2$ or diff.y/diff.x	M1 M1	
y = 2x + 4	A1	
	5	
$10.4.6 \times 10^4, 8.1 \times 10^4, 9(.0) \times 10^4, 9(.0) \times 10^4, 1.5 \times 10^5$	B3	B2 for any 4, B1 for any 2 or 3 correct
All lengths 1000 (feet)	B1	Accept 1×10^3
Valid comment on length and weight, accuracy	E2	E1 comment on length or weight, or looks at rounded comparisons
	6	length & weight (Yes)
11. (a) $1/6 \times 1/6$	M1	
= 1/36	M1 A1	
= 1/36 (b) (i) 2/6 or 4/6 correctly placed (Red)	M1 A1 B1	Ignore incorrect cancelling throughout (a).
= 1/36 (b) (i) 2/6 or 4/6 correctly placed (Red) 1/6 or 5/6 correctly placed (Black)	M1 A1 B1 B1	Ignore incorrect cancelling throughout (a).
= 1/36 (b) (i) 2/6 or 4/6 correctly placed (Red) 1/6 or 5/6 correctly placed (Black) 2/6, 4/6; 1/6, 5/6; 1/6, 5/6 all correct	M1 A1 B1 B1 B1	
= 1/36 (b) (i) 2/6 or 4/6 correctly placed (Red) 1/6 or 5/6 correctly placed (Black)	M1 A1 B1 B1	Ignore incorrect cancelling throughout (a). FT their probabilities, not $\frac{1}{2}$ and <1

GCSE Higher Tier Wales November 2011. Paper 1	Mark	Comments FINAL 18/11/11
12.(a) A, C, D and B	B3	B2 for any two correct, B1 for any one correct
All 4 reasons correct	E3	E2 for any two correct, E1 for any one correct
(b) Three lines $3x+y=12$, $x=1$ and $y=2$	B2	B1 for any two correct
Correct region	B1	CAO
Context region	9	Cho
13.(a) 31 to 35	B1	
(b) (8), 34, 44, 58, 60	B1	
(c) Correct cumulative frequency diagram, points	B1 B2	FT from cumulative (c). B1points plotted but not joined, correct
plotted and joined with a curve or straight lines	02	diagram with 1 point incorrectly plotted, or correct apart from
		being a 0.5 horizontal translation.
(d) (i) Approximately 25	B1	FT their cumulative frequency diagram in (d)
(ii)Intention to subtract horiz. readings for vert. 45 & 15	M1	The function of the function o
Interquartile range form their diagram	A1	(Approximately $31 - 22 = 9$)
interquartie funge form then diagram	7	(hpproximately 51 22))
$14 (a) v = k/x^2 OR v \alpha 1/x^2$	B1	
14.(a) $y = k/x^2$ OR $y \alpha 1/x^2$ 2 = $k/5^2$ OR $k = 50$	M1	FT non linear only throughout this question
$y = 50/x^2$ seen or implied in further work	A1	
(b)(i) $50/4$ (= 12.5)	B1	
(ii) $x^2 = 50/0.5$ OR $x^2 = 100$	M1	
$x = (\pm) 10$	Al	CAO, not FT
	6	
$15.(a)(i) \ 27x^{15}y^6$	B2	B1 for any two of the three parts
(ii) $3y^{-2}$ OR $3/y^{2}$	B2 B2	B1 for one stage of correct algebra manipulation with y terms
	02	Penalise -1 only if B2 but '×' remains in the expression
(b) $(2x+9)(2x-9)$	B2	B1 for $(2x9)(2x9)$
x = -9/2 and $x = 9/2$	B1	CAO
	7	
16.(a) 142°	B1	
Cyclic quadrilateral	E1	Depends on B1
(b) 76°	B1	
Angle at the centre is twice angle at circumference	E1	Depends on B1. OR Isosceles triangle and straight line
(c) 49°	B1	
(Angle semi circle and) alternate segment theorem	E1	Depends on B1. OR equivalent
	6	
17.(a) Strategy, finding area	M1	Any single area is sufficient
$1 \times 20 + 2.2 \times 10 + 2.4 \times 10 + 1.7 \times 20$	M1	
100	A1	
(b) 30 (metres)	B1	
	4	
18.Attempt to multiply by $(x+2)(2x+3)$	M1	Common denominator needs brackets unless they are implied in
OR as common denominator		future working
2(x+2) + 1(2x+3) = 3(2x+3)(x+2)	A1	
2x + 4 + 2x + 3	M1	FT equivalent level of difficulty. Does not depend on previous
$= 3(2x^2 + 7x + 6)$	M1	
$6x^2 + 17x + 11 = 0$	A1	Must equate to zero (maybe implied later)
		FT equivalent level of difficulty
(6x+11)(x+1) (=0)	M2	M1 for reasonable attempt to factorise, e.g. $6x$, x , 1, 11 found but
or simplified from substitution into quadratic formula		misplaced, or correct substitution into quadratic formula
- *		- A
x = -1 and $x = -11/6$	A1	
	8	

PAPER 2 - HIGHER TIER

GCSE Higher Tier Wales Nov	ember 2011. Paper 2	Mark	Comments Final 28/11/11
1.(a) $24 \times 60 \times 60$		M1	
= 86400		A1 D1	
(b) $(350 \times 1.78 =)$ 623 (Australian dollars) (623 - 320 =) 303 (Australian dollars)		B1 B1	In (b) FT until 2 nd error
(303/1.82=) (£)166.48(3		B1	
(c) Any correct 12% of a value us		B1	OR M2 for 600 x 0.88 ² (M1 for 600x0.88)
600 - 12% of $600 (= 600 - 72)$		M1	FT their 72
528 - 12% of $528 (= 528 - 63.3)$		M1	CAO. Penalise extra working -1
(£) 464	.04	A1 9	Appreciate: Possible B1 and SC1 for (£)752.64 Simple depreciate: Possible B1 and M1(456)
2.(a) (i) 30/200 or 0.15 or 15%		B1	ISW
(ii) 50 + 78		M1	Need not be a fraction. (Accept $58/200 + 78/200$ as M1)
128/200 or equivalent frac	tion, or 0.64 or 64%	A1	ISW. Do not penalise poor notation a 2^{nd} time
(b) Mid points 29, 48, 67, 86		B1	Two shown is sufficient if no error
$29 \times 30 + 48 \times 42 + 67 \times 50 + 8$	<u>36×78</u> (OR 12944)	M1	Attempt $\sum fx$ for their mid-points, must be within intervals
200 64.72		m1 A1	Attempt their∑ fx divided by 200. CAO. Accept rounded to 65 from working
(c) 77 to 95		B1	Do not accept 78
(d) Suitable uniform scales with as	tes labelled	B1	Accept mid-points uniformly spaced, irrespective of (0,0)
Correct frequency polygon		B2	FT their scales if possible. FT from (b)
			B1 for frequency polygon with one error in plotting, or for a
			translated polygon, or correct points plotted but not joined with
		11	straight lines. Ignore frequency diagram if polygon seen.
3.(a)		11	Ignore frequency ungruin if polygon seen.
B Line	Domestic		
11.51×2400	11.32×2400	M1	M1 for idea $\times 2400$ ignoring place value
(£)276.24	(£)271.68	A1	OR in pence. If units are given they must be correct
$15.07 \times (365 \pm 1)$	$15.82 \times (365 \pm 1)$		
(£)55.00/01	(£)57.74(3)	M1	Allow as a method for their number of days $12(41, 0)54, 85 = (0)57, 59 = 12((1, 0)55, 15/14, 0)57, 00$
		A1	[364] (£)54.85 (£)57.58 [366] (£)55.15/16 (£)57.90 If units are given they must be correct
276.24 + 55.0(1)	271.68+57.74	M1	
(£)331.24/5	(£)329.42	A1	[364] (£)331.09 (£)334.26 [366] (£)331.39/40 (£)334.58
L			Must be consistent place value. FT provided M2 awarded
Choice with reason, e.g. Domestic because cheaper, or Either as not much difference		E1	Or equivalent, but place value must be correct
(b) Realising that VAT is not going expensive, both still similar.	to alter which is more	E1	
4.(a) 6n - 2		8 B2	B1 for $6 \times n$ seen, (not $n+6$)
(b) $20^2 + 7$ OR $20x20 + 7$		В2 M1	MR-1 for finding 12 th term
= 4	07	A1	(No marks for 47)
(c) $9x + 36 - 4x + 20$		B1	FT until 2 nd error
=5x+56		B1	
(d) $35 - x = 7 \times 6$ -x = 42 - 35 OR $35 - 42 =$	r	M1 M1	FT 'their 42' only
-x - 42 - 35 OK $33 - 42 - 35$ or $-7 = x$	л	A1	
		9	
5.(a) 114 156 194		B1	
(114)/600 (156)/800 (194)/1 0.19 0.195 0.194	000	B1 P1	FT their cumulative totals expressed as fractions
0.19 0.195 0.194 (b) 194/1000 or 0.194 or equivale	nt	B1	FT from 1 error only in totals, other than FT total from cumulative FT from their entries only if/1000 unambiguous
(c) No AND with reason, e.g. low		B1	r rom don oncos only it/1000 unumorguous
	Yes with a reasoned explanation, e.g. very close to 20%		
6. Area photo = $\pi \times 4^2$ = 50(265 gm ²)		M1	50.2
$= 50(.265 \text{ cm}^2)$ Area frame = 8×8 (= 64 cm ²)		A1 B1	50.3
Strategy, area frame – area photo		M1	For the idea, FT their areas for M1 only. Must be areas
$13.7(cm^2)$ or 14 (cm	n ²)	Al	CAO
		5	

GCSE Higher Tier Wales November 2011. Paper 2	Mark	Comments Final 28/11/11
7.(a) One correct evaluation		
$3 \le x \le 4$ 2 correct evaluations,	B1	$\begin{array}{cccc} x & 2x^3 + x & -100 \\ 3 & -43 \\ 3.1 & -37.318 \end{array}$
$3.6 \le x \le 3.7$, or 3.55 and 3.65, one either side of 0	B1	3.2 -31.264 3.3 -24.826
2 correct evaluations, $3.6 \le x \le 3.65$, one either side of 0	M1	3.4 -17.992 3.5 -10.75
OR correct evaluation of 3.65 if previous B1 awarded		3.55 -6.97225 3.6 -3.088
3.6 No calculations shown: accept "too high", ">", etc.	A1	3.65 0.90425 3.7 5.006 3.8 13.544 3.9 22.538 4 32
(b) Overall correct <u>complete</u> method	B1	
First variable's value	B1	
Second variable's value	B1	FT their first variable
	7	x = 8 or $y = -3$
8.(a) 2, mm ² 3, cm ³	B2	B1 for any 2 correct entries
(b) $4\pi 2.8^{3/3}$ = 91.9(523 cm ³) or 92(cm ³)	M1 A1	
$-91.9(525$ cm) or $92(cm^2)$	A1 4	
9.(a) $d^2 = 4g/3$	4 M1	
$d = (\pm) \sqrt{(4g/3)}$	Al	Clearly square root of the entire right hand side
(b) $y(5x+2) = 3x+4$	B1	Expand brackets FT until 2 nd error for equivalent level of difficulty
5xy + 2y = 3x + 4	B1	Collect terms
5xy - 3x = 4 - 2y	B1	Factorise
$x\left(5y - 3\right) = 4 - 2y$	B1	
x = 4 - 2y	B1	
5y - 3	7	
$10.(a) \ x^2 - 3x + 6x - 18 = x^2 + 3x - 18$	B1 B1	$(x^2 - 18 \text{ gets B0})$ FT until 2 nd error
= x + 3x - 18 (b) 3(x+4) OR 3x + 12	B1 B1	Mark final answer
(b) $5(x + 4)$ OK $5x + 12$ (c) $(x - 10)(x - 1)$	B1 B2	B1 for $(x10)(x1)$. If B2 penalise -1 further inappropriate work
(d) $2(x+2)\{2(x+2)+1\}$ OR $(x+2)\{4(x+2)+2\}$	B1	FT til 2^{nd} error OR correct full expansion with attempt to factorise
= 2(x+2)(2x+5)	B1	(x+2)(4x+10) gets first B1 only
(e) $x = \{4 \pm \sqrt{(4^2 - 4 \times 7 \times -17)}\}/(2 \times 7)$	M1	Allow 1 slip in substitution
$x = (4 \pm \sqrt{492})/14$	A1	
1.9 and -1.3	A1	CAO
$11 4a \pm 2m = 622 \qquad OB 600 622 (= 2 array (11x))$	10 P1	
11.4s + 3m = 622OR $690 - 622$ (= 2 square tiles) $6s + 3m = 690$ OR $68/2$ (= 1 square tile)	B1 B1	
68 + 3m = 690 OK $68/2$ (= 1 square tile) Length rectangle 162 (mm)	B1 B2	B1 for square tile 34 with attempt to calculate length of the
Longer rotangie 102 (mm)		rectangular tile, or
	4	B1 for 1 numerical error in correct method provided previous B2 a
12.(a) Sight of tangent at $t = 12$	B1 M1	
Difference vertical / difference horizontal Reasonable gradient for their <u>tangent</u>	M1 A1	
(b) Using trapezium rule or evidence of sum of areas.	M1	At least one correct area
Correct expression for total area.	A1	40+160+270
470	Al	
(c) Distance (as (b)) metres (or m)	B1 7	FT from (b). Units must be given
13. 35.15 and 35.25	B1	
299.7 and 300.3	B1	
Greatest av. Speed = Greatest dist. / Least time = $8.54(3385m/s)$	M1 A1	300.3/35.15, FT their bounds but not 35.2 and 300
Least av. Speed = Least dist. / Greatest time = $8.5(021m/s)$	M1 A1	299.7/35.25, FT their bounds but not 35.2 and 300
Explanation	E1	Award E1 if only the two relevant calculations shown and no other <i>If the 2 relevant calculations shown (amongst others), but not</i>
	7	indicated as least and greatest then award M1 A0 M1 A0 E0

GCSE Higher Tier Wales November 2011. Paper 2	Mark	Comments Final 28/11/11
14. Strategy, e.g. Appropriate use of Pythagoras' Theorem	S1	Accept sight of $16^2 + 9^2$
or appropriate trial and improvement or trigonometry		
$37^2 = (16x)^2 + (9x)^2$ (no brackets M1)	M2	2 trials, ratio 1: w correct (M1 for 1 trial)
$(x^2=)$ 1369/337 (=4.0623)	A1	Interpretation of trial above or below
(x=) 2(.0155)	A1	Interpretation of trial above AND below
Length 32(.25 inches) and Width 18.(14inches)	A1	32(inches) and 18(inches)
OR Strategy S1		Answers 32, 18 no working SC2
tanx = 16/9 or $tany = 9/16$ M1		Answers 32.25, 18.14 no working B6
$x = 60.6(42^{\circ})$ $y = 29.3(57^{\circ})$ A1		
Appropriate trig to find length M1		Angles are 60.6 and 29.357
Appropriate trig to find width M1		
<i>L</i> 32(.25 inches) and W 18.(14inches) A1	6	
$15.(a) (0.50+0.35) \times (0.50+0.35)$	M1	
= 0.72(25) or $72(.25)%$	A1	
(b) $1 - P(\text{no cumin})$ OR $P(CC')+P(C'C)+P(CC)$	S1	OR equivalent full list
$1 - 0.65 \times 0.65$ OR $0.35 \times 0.65 + 0.65 \times 0.35 + 0.35 \times 0.35$	M1	
0.5775 or 57.75%	A1	Accept rounded or truncated from correct working
	5	
16. Overall strategy (1/2absinC & cos rule)	B1	
$44.6 = \frac{1}{2} \times 6.4 \times AC \times \sin 74$	M1	
AC = 14.499173(cm)	A1	
$BC^{2}=6.4^{2} + AC^{2} - 2 \times 6.4 \times AC \times \cos 74$	M1	FT their AC
$BC^2 = 200.(05)$	A1	
BC = 14(.14 cm)	A1	
	6	

GCSE Mathematics - Wales Pilot MS - November 2011

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>