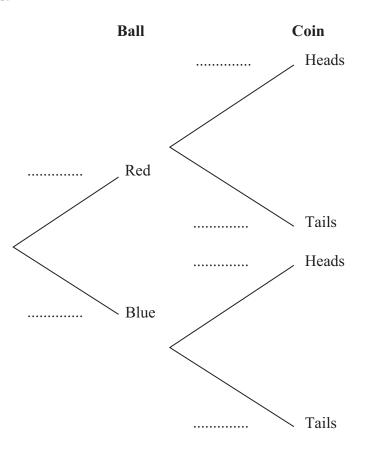


| _     |  |
|-------|--|
| Leave |  |
| Louve |  |
| blank |  |

| 1. On a randomly chosen day the probability that Bill travels to school by car, by                                   | y bicycle |
|----------------------------------------------------------------------------------------------------------------------|-----------|
| or on foot is $\frac{1}{2}$ , $\frac{1}{6}$ and $\frac{1}{3}$ respectively. The probability of being late when using | ng these  |
| methods of travel is $\frac{1}{5}$ , $\frac{2}{5}$ and $\frac{1}{10}$ respectively.                                  |           |
| (a) Draw a tree diagram to represent this information.                                                               | (3)       |
| (b) Find the probability that on a randomly chosen day                                                               |           |
| (i) Bill travels by foot and is late,                                                                                |           |
| (ii) Bill is not late.                                                                                               | (4)       |
| (c) Given that Bill is late, find the probability that he did not travel on foot.                                    | (4)       |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |
|                                                                                                                      |           |


|                                                                                                |     | Lea<br>bla |
|------------------------------------------------------------------------------------------------|-----|------------|
| 2. (a) Given that $P(A) = a$ and $P(B) = b$ express $P(A \cup B)$ in terms of $a$ and $b$ when |     |            |
| <ul><li>(i) A and B are mutually exclusive,</li><li>(ii) A and B are independent.</li></ul>    |     |            |
| (ii) It and B are independent.                                                                 | (2) |            |
| Two events $R$ and $Q$ are such that                                                           |     |            |
| $P(R \cap Q') = 0.15$ , $P(Q) = 0.35$ and $P(R Q) = 0.1$                                       |     |            |
| Find the value of                                                                              |     |            |
| (b) $P(R \cup Q)$ ,                                                                            |     |            |
|                                                                                                | (1) |            |
| (c) $P(R \cap Q)$ ,                                                                            | (2) |            |
| $(A)$ $\mathbf{p}(\mathbf{p})$                                                                 | (2) |            |
| (d) $P(R)$ .                                                                                   | (2) |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |
|                                                                                                |     |            |

**3.** An experiment consists of selecting a ball from a bag and spinning a coin. The bag contains 5 red balls and 7 blue balls. A ball is selected at random from the bag, its colour is noted and then the ball is returned to the bag.

When a red ball is selected, a biased coin with probability  $\frac{2}{3}$  of landing heads is spun.

When a blue ball is selected a fair coin is spun.

(a) Complete the tree diagram below to show the possible outcomes and associated probabilities.



**(2)** 

Shivani selects a ball and spins the appropriate coin.

(b) Find the probability that she obtains a head.

**(2)** 

Given that Tom selected a ball at random and obtained a head when he spun the appropriate coin,

(c) find the probability that Tom selected a red ball.

**(3)** 

Shivani and Tom each repeat this experiment.

(d) Find the probability that the colour of the ball Shivani selects is the same as the colour of the ball Tom selects.

**(3)** 

Leave blank

4. The Venn diagram in Figure 1 shows the number of students in a class who read any of 3 popular magazines A, B and C.

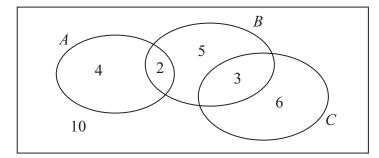



Figure 1

One of these students is selected at random.

- (a) Show that the probability that the student reads more than one magazine is  $\frac{1}{6}$ . **(2)**
- (b) Find the probability that the student reads A or B (or both). **(2)**
- (c) Write down the probability that the student reads both A and C.

**(1)** 

Given that the student reads at least one of the magazines,

(d) find the probability that the student reads C. **(2)** 

(e) Determine whether or not reading magazine B and reading magazine C are statistically independent. **(3)** 

| Leave |  |
|-------|--|
| blank |  |

| 5. A group of office workers were questioned for a health magazine and $\frac{2}{5}$ were found to                                   | ) |
|--------------------------------------------------------------------------------------------------------------------------------------|---|
| take regular exercise. When questioned about their eating habits $\frac{2}{3}$ said they always ear                                  | t |
| breakfast and, of those who always eat breakfast $\frac{9}{25}$ also took regular exercise.                                          |   |
| Find the probability that a randomly selected member of the group                                                                    |   |
| (a) always eats breakfast and takes regular exercise, (2)                                                                            | ) |
| (b) does not always eat breakfast and does not take regular exercise. (4)                                                            | ) |
| (c) Determine, giving your reason, whether or not always eating breakfast and taking regular exercise are statistically independent. |   |
| (2)                                                                                                                                  |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |
|                                                                                                                                      |   |

Leave blank

| 6. | There are 180 students at a college following a general course in computing. Students or |
|----|------------------------------------------------------------------------------------------|
|    | this course can choose to take up to three extra options.                                |

112 take systems support,

70 take developing software,

81 take networking,

35 take developing software and systems support,

28 take networking and developing software,

40 take systems support and networking,

4 take all three extra options.

(a) In the space below, draw a Venn diagram to represent this information.

**(5)** 

A student from the course is chosen at random.

Find the probability that this student takes

(b) none of the three extra options,

**(1)** 

(c) networking only.

**(1)** 

Students who want to become technicians take systems support and networking. Given that a randomly chosen student wants to become a technician,

(d) find the probability that this student takes all three extra options.

**(2)** 



Leave blank

- **7.** A jar contains 2 red, 1 blue and 1 green bead. Two beads are drawn at random from the jar without replacement.
  - (a) In the space below, draw a tree diagram to illustrate all the possible outcomes and associated probabilities. State your probabilities clearly.

**(3)** 

(b) Find the probability that a blue bead and a green bead are drawn from the jar.

**(2)**