
May 08 P

1. Clearly showing how you obtained your answer, ESTIMATE the value of: **Formula List** $\frac{87 \times 248}{52}$ 90×200 = 18 000 - 1800 - 360 50 50 5 cross Volume of prism = area of cross-section × length section [2] Volume of sphere = $\frac{4}{3} \pi r^3$ (a) Find 240 as a percentage of 600. 240×100 = 40%2. Surface area of sphere = $4\pi r^2$ [2] Volume of cone = $\frac{1}{3}\pi r^2 h$ (b) A recipe for making 12 pancakes includes the following ingredients. Curved surface area of cone = πrl 2 large eggs 200ml milk 110g flour In any triangle ABC 30 parkakos = 24 + 6 parkukos Jonda + half questitie 5 oggos. 500 mille Calculate the quantities of these ingredients needed to make 30 pancakes. Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$ C Area of triangle = $\frac{1}{2}ab \sin C$ 275 Flur [3] The Quadratic Equation The solutions of $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$ where $a \neq 0$ are given by **Standard Deviation** Standard deviation for a set of numbers $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$ or $s = \sqrt{\frac{\sum x^2}{n}} - \left\{\frac{\sum x}{n}\right\}^2$ x_1, x_2, \ldots, x_n , having a mean of \overline{x} is given by (185-04) (185-04) Turn over.

Examiner only

3

4. In a game a player rolls a coin onto a squared board. The squares on the board are coloured red, blue, green or yellow. If the coin lands entirely within one of these coloured squares the player wins a prize, otherwise the player loses.

5

Examiner

only

[2]

Turn over.

The table below shows the probabilities of the coin landing entirely within the coloured squares.

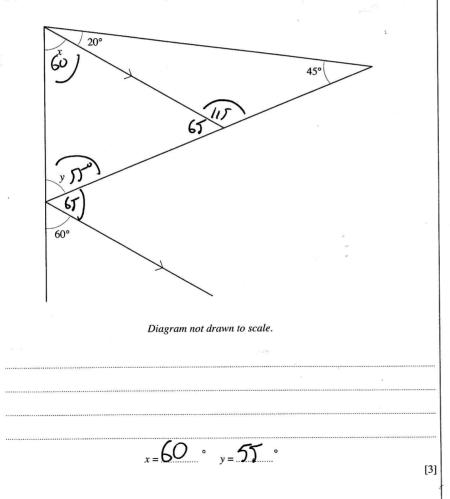
Colour	Red	Blue	Green	Yellow	Player loses
Probability	0.15	0.09	0.05	0.06	0.65

(a) One day 200 people play this game. Approximately how many would you expect to win a prize?

0.35×200 = 35,200 = 70

(b) It costs 80p to play the game once. The prize for winning is £2. If the 200 people play the game once, approximately how much profit do you expect the game to make?

£ 160 200×800 : dance samo £140 70 x £2 = Jays .20 [2]


Examiner

5. (a) The angles of a quadrilateral are x° , 49° , $3x^{\circ}$ and 111° . Form an equation in x, and use your equation to find the value of x.

6

(b) Find the size of **each** of the angles marked x and y in the following diagram.

(i) $7x + 4 = 3x + 16$		
7x-3k=16-4		
42211		
x=12=3		
4		
(ii) $3x + 2 = 2(3 - 2x)$	*	
3x+2=6-4x		
3×+4× : 6-2		
72:4		
x:4 1		
2		[
Simplify each of the following.		
(i) $2(3r+1) + 5r$		
Gr+2+5r		
= 11-+2	5	
(ii) $3(2p+3)-2(p-1)$		
6p+9-2p+2		
4p+11		

7

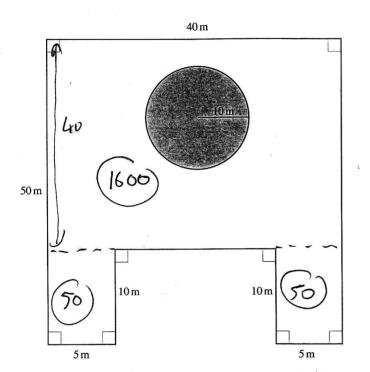
Examiner

only

Turn over.

(185-04)

TRUE |


Examiner

only

6.

Examiner only 9

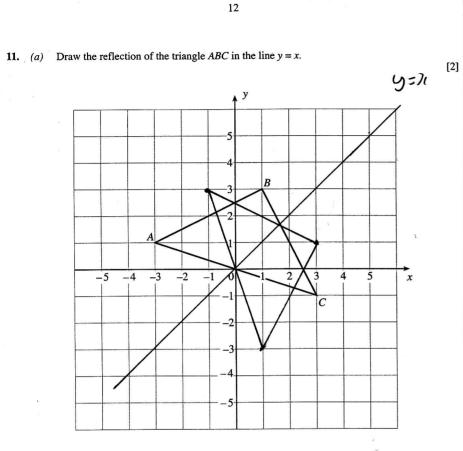
7. The following diagram shows a paved area with a circular pond of radius 10m.

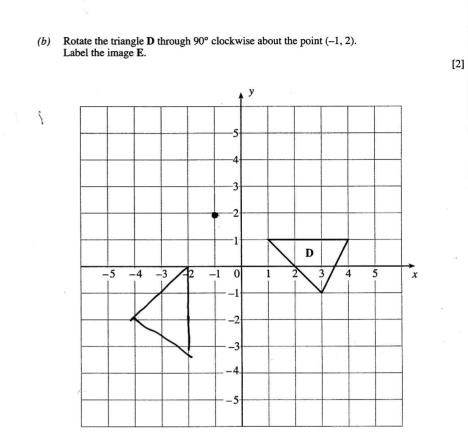
8

Using the value of π as 3.14, calculate the area of the paved surface clearly indicating the units of your answer.

while shape = 1600 + 50 + 50 - 1700 pond = IT × 10² = 3.14 × 100 = 314 paving = 1700 - 314 = 1386 ~ Areo 1 [6]

8. Showing all your working, estimate the value of: $\frac{601.9 \times 19.94}{1000}$ 0.305 - 120000 - 40000 606×20 = 12000 10 10 3 0.3 0.3 [3]


(185-04)

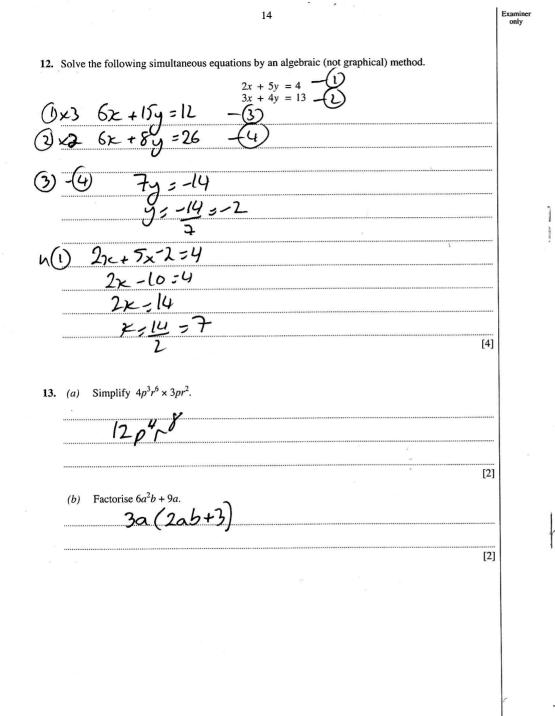

Examiner

only

11 10 Examiner only Examiner only 10. Write down, in terms of *n*, the *n*th term of each of the following sequences. (a) 3 7 4 4 4 4 4 4 4 4 (a) 15 19 9. Express 500 as a product of prime numbers in index form. 500 500=2×5 2' 270 4n-1 1 ins [2] (b) 1 × 3 2×4 3 × 5 4×6 5 n(n+2)4 [2] [3] (185-04) Turn over. (185-04)

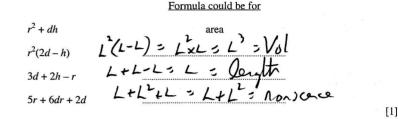
- Series

Examiner only

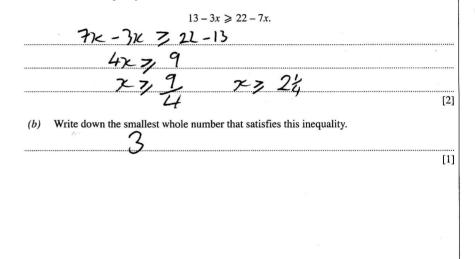

÷

(185-04)

(185-04)

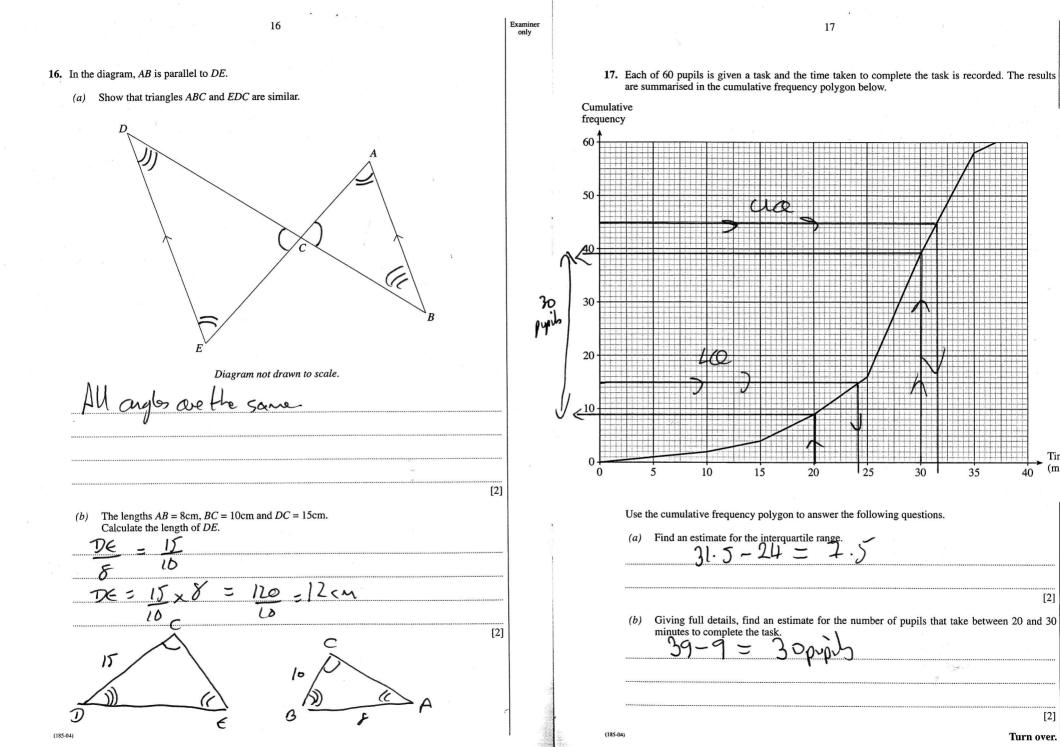

Turn over.

Examiner only



14. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by the formulae, write down, for each case, whether the formulae could be for a length, an area, a volume or none of these. The first one has been done for you.

15



15. (a) Solve the inequality

Examiner

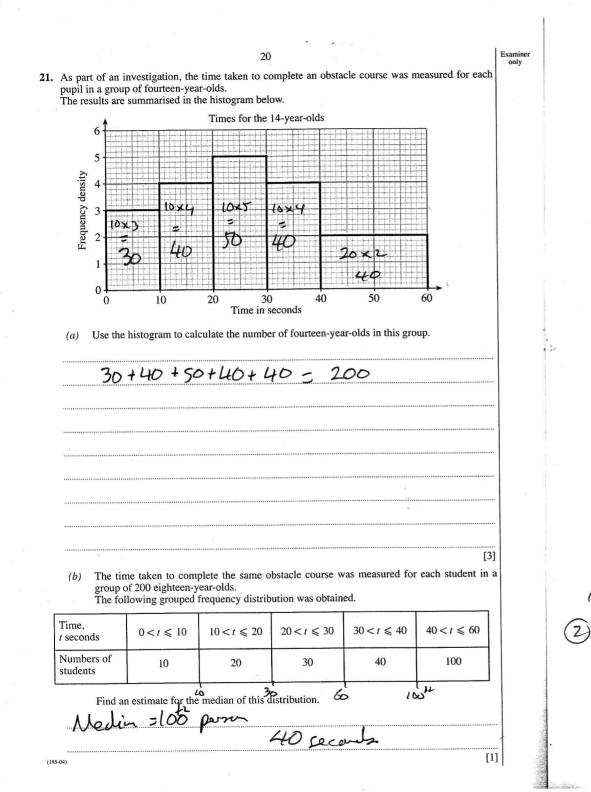
only

Examiner only

Time taken (minutes)

40

[2]


[2]

Turn over.

	18	Examiner only		19		Examiner only
18.	(a) Factorise $16p^2 - 25$. (4p + 5)(4p - 5)		20. Patterns are	generated as shown in the diagram.	lcm lcm	a 74
	[2] (b) Factorise $4g^2 + 3q - 10$. (-40) + 8q, $-5q4q^2 + 8q - 5q - 104q(q+2) - 5(q+2)$ $(4q-5)(q+2)[2]$	•	Icm Pattern 1		$\frac{1}{2} \frac{1}{1 \text{ cm}} \frac{1}{\sqrt{24}} \frac{1}{\sqrt{1 + \sqrt{24}}} \frac{1}{1 + \sqrt{2$	5
19.	Make <i>h</i> the subject of the formula 10(h-2e) = 7(h-k).		2452	3+53 4+54 Diagrams not drawn to scale	5+55	*
	10h - 20e = 7h - 7k 10h - 7h = 20e - 7k 3h = 20e - 7k		Find the peri working.	imeter of Pattern 6 in the form $a + \sqrt{b}$, where a	and <i>b</i> are whole numbers. Show your	
	L = <u>20e - 7k</u> 3					
	[3]					
	n 				[4]	
(185-0	24)		(185-04)		T i	2
			(105.04)		Turn over.	

.

ø

22. A cylinder, with base of radius x cm and height h cm, has the same volume as a cuboid with length x cm, width x cm and height (x + 2) cm. Find an expression for h in terms of x and π , simplifying your answer.

Volume of cubicity : XxXx (x+2) : X(x+2) = Volum are equal so ITX h= x (x+2) h= 2 (x+2) = x+2 x'IT IT [5] 23. (a) Write down a value of x (where x > 1) for which $x^{\frac{3}{2}}$ is rational. $3\frac{3}{4} = 5\frac{3}{4} = 8$ [1] (b) Express 0.541 as a fraction. x: 0.5414141 .-10x=5.414141. - - (1) 100×54.141414... $\neg \bigcirc$ 1000 x = 54 1.414/4/... [2] - 990x = 536 x= 536 947 (185-04) Turn over.

- Examiner only
- 24. A box contains 2 strawberry yogurts, 4 vanilla yogurts and 6 cherry yogurts. Three yogurts are selected at random from the box. Calculate the probability that at least one of the selected yogurts is a cherry yogurt.

Plat burt are cherry, no cherm = _ 6 -12 10 11 = -120 \$ 1320 = 1320 -120 1320 1320 [3]

= 1200 1320

(185-04)

BLANK PAGE

23

Turn over.

(185-04)

24 Examine 25 Examiner only only 25. The diagram shows a quadrilateral OABC. (c) Does M lie on the line CA? Give a reason for your answer. did then CA would be Nο Secure J pulling6 31 3x10x + 4yC [1] 0 7**y** Diagram not drawn to scale. In the quadrilateral OABC, the vectors OA, OB and OC are given by $\mathbf{OA} = 3\mathbf{x}, \mathbf{OB} = 10\mathbf{x} + 4\mathbf{y} \text{ and } \mathbf{OC} = 7\mathbf{y}.$ (a) Express CA in terms of x and y. $\overrightarrow{A} = -\overrightarrow{OC} + \overrightarrow{OR}$ = - 7y + 3k [1] Given that M is the mid-point of OB, express each of the following in terms of x and y in (b) their simplest form. (i) **OM** OM = 1 OB = 1 (10x+44) = 5x+24 (ii) MA MA = -0M + 0A= -5x - 2y + 3k= -2x - 2y[2] (185-04 (185-04)