GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL (NEW)
MATHEMATICS
UNIT 4 APPLIED MATHEMATICS B 1300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE MATHEMATICS

A2 UNIT 4 APPLIED MATHEMATICS B

SUMMER 2019 MARK SCHEME

SECTION A - STATISTICS

$\begin{aligned} & \text { Qu. } \\ & \text { No. } \end{aligned}$	Solution	Mark	Notes
1(a)	$\begin{aligned} P(W)= & 0.2 \times 0.67+0.1 \times 0.55 \\ & +0.7 \times 0.95 \\ = & 0.134+0.055+0.665 \\ = & 0.854\left(\text { OR } \frac{427}{500}\right) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 for sight of at least four correct terms within addition formula
	$\begin{aligned} & \mathrm{OR} \\ & \begin{aligned} P(W) & =1-P(F) \\ & =1-(0.2 \times 0.33+0.1 \times 0.45 \\ & \quad+0.7 \times 0.05) \\ & =1-(0.066+0.045+0.035) \\ & =1-0.146 \\ & =0.854 \end{aligned} \end{aligned}$	(M1) (A1) (A1)	$1-P(F)$ needed for M1 and A1 Sight of at least four correct terms within addition formula for M1 SC1 for $0.146\left(\frac{73}{500}\right)$
(b)	$\begin{aligned} P(B \mid W) & =\frac{P(B \cap W)}{P(W)} \\ & =\frac{0.1 \times 0.55}{0.854} \\ & =0.0644(0281 \ldots) \text { OR } \frac{55}{854} \end{aligned}$	M1 A1	FT their denominator from (a) provided $0<P(W)<1$ for possible M1A1 3sf required
		[5]	

Qu. No.	Solution	Mark	Notes
3 (a)	Each throw is independent AND The probability 0.2 stays the same for each throw.	B1	lgnore reference to statements based on fixed n and success/failure outcomes.
Valid reason. Eg. No because she may improve with No, because she may get frustrated and the probability 0.2 might decrease. Yes. She is unable to improve her performance.	B1	B1	B1
(b)Two valid changes. As n increases: e.g. the distribution becomes more symmetrical e.g. more bell-shaped e.g mean increases e.g. variance/SD increases e.g. mode increases e.g. probability of mode decreases e.g. the probability of knocking at least one coconut off increases.	[4]		

SECTION B - DIFFERENTIAL EQUATIONS AND MECHANICS

Q6	Solution	Mark	Notes
(a)	$\begin{aligned} & \mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t} \\ & \mathbf{a}=-36 \sin (3 t) \mathbf{i}-10 \cos (2 t) \mathbf{j} \\ & \mathbf{F}=(0 \cdot 5)(-36 \sin (3 t) \mathbf{i}-10 \cos (2 t) \mathbf{j}) \\ & (\mathbf{F}=-18 \sin (3 t) \mathbf{i}-5 \cos (2 t) \mathbf{j}) \end{aligned}$	M1 A1 A1 [3]	sin to cos or vice versa and coefficient multiplied i, \mathbf{j} retained cao FT a
(b)	$\begin{aligned} & \mathbf{r}=\int \mathbf{v} \mathrm{d} t \\ & \mathbf{r}=4 \sin (3 t) \mathbf{i}+\frac{5}{2} \cos (2 t) \mathbf{j}(+\mathbf{c}) \\ & t=0, \mathbf{r}=4 \mathbf{i}+7 \mathbf{j} \\ & \mathbf{c}=4 \mathbf{i}+\frac{9}{2} \mathbf{j} \\ & \mathbf{r}=4 \sin (3 t) \mathbf{i}+\frac{5}{2} \cos (2 t) \mathbf{j}+4 \mathbf{i}+\frac{9}{2} \mathbf{j} \\ & \left(\mathbf{r}=4(\sin (3 t)+1) \mathbf{i}+\frac{1}{2}(5 \cos (2 t)+9) \mathbf{j}\right) \end{aligned}$	M1 A1 m1 A1 [4]	sin to cos or vice versa and coefficient divided \mathbf{i}, \mathbf{j} retained cao Used cao
(c)	$\begin{aligned} & \text { When } t=\frac{\pi}{2}, \\ & \mathbf{r}=4\left(\sin \left(\frac{3 \pi}{2}\right)+1\right) \mathbf{i}+\frac{1}{2}\left(5 \cos \left(\frac{2 \pi}{2}\right)+9\right) \mathbf{j} \\ & \mathbf{r}=2 \mathbf{j} \end{aligned}$ Distance of P from $O=2$ (m)	M1 A1 [2]	Substitution, si, FT similar exp. for \mathbf{r} cao
	Total for Question 6	9	

Q7	Solution	Mark	Notes
(a)	Attempt to resolve in two directions $\begin{aligned} X & = \pm 21 \cos \alpha \mp 8 \\ & = \pm 21 \times 0 \cdot 8 \mp 8 \\ & = \pm 8 \cdot 8 \end{aligned}$ $\begin{aligned} Y & = \pm 21 \sin \alpha \mp 11 \\ & = \pm 21 \times 0 \cdot 6 \mp 11 \\ & = \pm 1 \cdot 6 \end{aligned}$ $\begin{align*} R & =\sqrt{(\pm 1 \cdot 6)^{2}+(\pm 8 \cdot 8)^{2}} \\ & =4 \sqrt{5} \text { or } 8 \cdot 9(4427 \ldots) \tag{N} \end{align*}$	M1 A1 A1 m1 A1 [5]	No missing/extra forces, $21 \cos \alpha$ and 8 opposing $21 \sin \alpha$ and 11 opposing FT X, Y provided dim. correct cao
(b)	For any valid reason with correct working, e.g. - By Pythagoras, $21^{2}>11^{2}+8^{2}$. - Forces will form sides of a vector triangle when in equilibrium. However, $21>8+11$ so this is impossible. - Finding angles $\begin{aligned} & 21 \cos \alpha=8 \text { gives } \alpha=67 \cdot 6 \ldots{ }^{\circ} \\ & 21 \sin \alpha=11 \text { gives } \alpha=31 \cdot 588 \ldots{ }^{\circ} \end{aligned}$ Values for α are different, so cannot be in equilibrium.	E1 [1]	
	Total for Question 7	6	

Q8	Solution	Mark	Notes
(a)	N2L applied to box $\begin{aligned} & -0 \cdot 4 v^{2}=2 \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & 5 \frac{\mathrm{~d} v}{\mathrm{~d} t}+v^{2}=0 \end{aligned}$	M1 A1 [2]	Dimensionally correct equation Convincing
(b)	$\begin{aligned} & -\int \frac{5}{v^{2}} \mathrm{~d} v=\int \mathrm{d} t \\ & \frac{5}{v}=t(+C) \\ & \text { When } t=0, v=5 \\ & C=1 \\ & v=\frac{5}{t+1} \end{aligned}$	M1 A1 m1 A1 [4]	Separating variables including attempt to integrate cao Either limits or initial conditions used cao
(c)	Takes an infinite amount of time to come to rest	E1 [1]	
	Total for Question 8	7	

Q9	Solution	Mark	Notes
(a)	Moments about base of wire 2 $\begin{aligned} & m g d_{C}+T_{1} \times 1=m g\left(1+d_{A}\right)+m g\left(1-d_{B}\right) \\ & T_{1}=m g+m g d_{A}+m g-m g d_{B}-m g d_{C} \\ & T_{1}=m g\left(2+d_{A}-d_{B}-d_{C}\right) \end{aligned}$ Resolve vertically $\begin{aligned} & T_{1}+T_{2}=3 m g \\ & T_{2}=3 m g-T_{1} \end{aligned}$ $T_{2}=m g\left(1-d_{A}+d_{B}+d_{C}\right)$ oe	M1 A1 A1 M1 A1 A1 [6]	Dim. correct, all forces/terms cao Convincing Dim. correct, all forces/terms cao
(b)	(i) For maximum tension in T_{1} $d_{A}=0 \cdot 3 \quad$ (maximum) $d_{B}=0 \cdot 1 \quad$ (minimum) $d_{C}=0 \quad$ (minimum) $T_{1}=m g(2+0 \cdot 3-0 \cdot 1-0)$ Maximum $T_{1}=2 \cdot 2 m g$ (ii) Maximum $T_{2}=2 \cdot 2 \mathrm{mg}$, due to symmetry	M1 A1 B1 [3]	Used with at least 2 out of 3 correct cao FT candidate's value of T_{1}. Reason MUST be given
	Total for Question 9	9	

Q10	Solution	Mark	Notes
(a)	$\begin{aligned} & \mathbf{v}=\mathbf{u}+\mathbf{a} t, \text { with } \mathbf{u}=(30 \mathbf{i}-1 \cdot 4 \mathbf{j}), \mathbf{a}=-g \mathbf{j}, t=\frac{4}{7} \\ & \mathbf{v}=(30 \mathbf{i}-1 \cdot 4 \mathbf{j})+(-g \mathbf{j})\left(\frac{4}{7}\right) \\ & \mathbf{v}=(30 \mathbf{i}-7 \mathbf{j}) \\ & \|\mathbf{v}\|=\sqrt{(30)^{2}+(-7)^{2}}=\sqrt{949} \\ & \|\mathbf{v}\|=30 \cdot 8 \quad(1 \mathrm{dp}) \quad\left(\mathrm{ms}^{-1}\right) \end{aligned}$ Alternative solution(s) Working vertically using $v=u+a t$, with $\begin{aligned} & u= \pm 1 \cdot 4, a= \pm 9 \cdot 8, t=\frac{4}{7} \\ & v= \pm 1 \cdot 4+(\pm 9 \cdot 8)\left(\frac{4}{7}\right)= \pm 7 \end{aligned}$ or Working vertically using $v^{2}=u^{2}+2 a s$, with $\begin{aligned} & u= \pm 1 \cdot 4, a= \pm 9 \cdot 8, s= \pm 2 \cdot 4 \\ & v^{2}=(\pm 1 \cdot 4)^{2}+2(\pm 9 \cdot 8)(\pm 2 \cdot 4) \\ & v= \pm 7 \end{aligned}$ followed by $\begin{aligned} \text { speed } & =\sqrt{(30)^{2}+(\pm 7)^{2}}=\sqrt{949} \\ & =30 \cdot 8(1 \mathrm{dp}) \quad\left(\mathrm{ms}^{-1}\right) \end{aligned}$	M1 A1 A1 [3] (M1) (A1) (M1) (A1) (A1) ([3])	Used, Allow $\mathbf{a}= \pm g \mathbf{j}$ cao $\mathrm{FT} \mathbf{v}=(30 \mathbf{i}+k \mathbf{j})$ 1.4 and $9 \cdot 8$ same sign giving $v= \pm 7$ or $\pm 7 \mathbf{j}$ 1.4 and $9 \cdot 8$ and 2.4 same sign giving $v= \pm 7$ or $\pm 7 \mathbf{j}$ FT v provided 30 is used

(b)	$\begin{aligned} & \text { i) } \begin{array}{l} \mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}, \text { with } \\ \mathbf{u}=(30 \mathbf{i}-1 \cdot 4 \mathbf{j}), \mathbf{a}=-g \mathbf{j}, t=0 \cdot 4 \\ \mathbf{s}=(30 \mathbf{i}-1 \cdot 4 \mathbf{j})(0 \cdot 4)+\frac{1}{2}(-g \mathbf{j})(0 \cdot 4)^{2} \\ \mathbf{s}=12 \mathbf{i}-1 \cdot 344 \mathbf{j}+2 \cdot 4 \mathbf{j} \\ \mathbf{s}=12 \mathbf{i}+1 \cdot 056 \mathbf{j} \end{array} \\ & \hline(2 \cdot 4 \mathbf{j}) \end{aligned}$ Alternative solution for i) Working vertically using $\mathrm{s}=\mathrm{u} t+\frac{1}{2} \mathrm{a} t^{2}$, with $\begin{aligned} & u= \pm 1 \cdot 4, a= \pm 9 \cdot 8, t=0 \cdot 4 \\ & s=(\pm 1 \cdot 4)(0 \cdot 4)+\frac{1}{2}(\pm 9 \cdot 8)(0 \cdot 4)^{2} \\ & s= \pm 1 \cdot 344 \end{aligned}$ Dist. above ground $=2 \cdot 4-1 \cdot 344(=1 \cdot 056)$ Horizontally, $x=30 \times 0 \cdot 4=12$ $\begin{equation*} \mathbf{s}=12 \mathbf{i}+1 \cdot 056 \mathbf{j} \tag{m} \end{equation*}$ ii) Comparison of \mathbf{i}, \mathbf{j} coefficients yields $x=12 \text { and }$ Net clearance $=1 \cdot 056-0 \cdot 9=0 \cdot 156 \quad(\mathrm{~m})$ $\approx 16 \mathrm{~cm}$	M1 m1 A1 (M1) (m1) (A1) A1 [4]	Used, Allow $\mathbf{a}= \pm g \mathbf{j}$ Adding initial position vector of $(2 \cdot 4 \mathbf{j})$ cao Allow $\pm 1 \cdot 344 \mathbf{j}$ FT s above, i.e. $2 \cdot 4-\|s\|$ cao Value of x MUST be stated Convincing
(c)	i) Valid Reason, e.g. - Dimensions of the ball not considered - Air resistance/wind (friction) - Spin/rotation of the ball ii) Sensible improvement to account for any of the above	E1 E1 [2]	
	Total for Question 10	9	

