5. Managing Variable Acceleration Using Vectors

From Unit 2:

When acceleration is not uniform and the position, velocity and accelerations are given as functions of time then calculus is used to model particle motion:

- A particle P is moving along a straight line. At time t = 0, the particle is at point A and is moving with velocity $8ms^{-1}$ towards a point B on the line, where AB = 30m. At time t seconds (where $t \ge 0$), the acceleration of P is $(2 2t)ms^{-2}$ in the direction \overrightarrow{AB} .
 - a. Find an expression, in terms of t, for the displacement of P from A at t seconds
 - b. Show that P does not reach B.
 - c. Find the value of t when P returns to A, giving your answer to 3 significant figures.
 - d. Find the total distance travelled by P in the interval between the two instants when it passes through A.

A small metal ball moving in a magnetic field is modelled as a particle P of mass 0.2kg, moving in a straight line under the action of a single variable force F Newtons. At time t seconds, the displacement, x metres is given by $x = 3 \sin 2t$.

Find the magnitude of F when $t = \frac{\pi}{6}$

Unit 4:

When a particle is moving in a plane you can describe its position \mathbf{r} , its velocity \mathbf{v} and its acceleration \mathbf{a} using vectors. The relationships between position (displacement), velocity and acceleration are the same in two dimensions as in one dimension.

Eg3 A particle P is moving in a plane. At time t seconds, its velocity Vms⁻¹ is given by

$$\boldsymbol{v} = 3t\boldsymbol{i} + \frac{1}{2}t^2\boldsymbol{j}$$

When t = 0, the position vector of P is (2i - 3j)m. Find

- a. the position vector of P at time t seconds
- b. the acceleration of P when t = 3.

- A particle P is moving in a plane so that, at time t seconds, its acceleration is (4i 2tj) ms⁻². When t = 3, the velocity of P is 6i ms⁻¹ and the position vector of P is (20i + 3j)m with respect to the origin.
 - a. the angle between the direction of motion of P and i when t = 2
 - b. the distance of P from O when t = 0.

Exercise 5.1 Qs 1 to 4

A particle P of mass 0.5kg is moving under the action of a single force F newtons. At time t seconds, the position vector of P, r metres, is given by

$$r = \left(\frac{3t^2}{2} - \frac{t^3}{3}\right)i + (2t^2 - 8t)j$$

Find

- a. the value of t when P is moving parallel to the vector i
- b. the magnitude of \mathbf{F} when t = 3.5
- The velocity of a particle P at time t seconds is $((3t^2 8)i + 5j)$ ms⁻¹. When t = 0, the position vector of P with respect to a fixed origin is (2i 4j)m.
 - a. Find the position vector of P after t seconds

A second particle Q moves with constant velocity (8i + 4j) ms⁻¹. When t = 0 the position vector of Q with respect to the origin is 2i m.

b. Prove that P and Q collide.

Exercise 5.1 Remaining Odds

Ex 5.1 Numerical Answers

1 a
$$(3i + 23j) m s^{-1}$$
 b $18j m s^{-2}$

2 a $(2ii + 2j) m s^{-1}$ b $(3ii + 23j) m$

3 a $16im s^{-1}$ b $(3ii + 2i) m$

4 a $20m s^{-1}$ b $(128i - 104.8j) m$

5 a $6\sqrt{3} m s^{-1}$ b $1 = 2$ c $(-16i + 4j) m$

6 a $(3i^2 + 9)i + (4i^3 - 10i + 6)j) m s^{-1}$

7 a $13m$

8 a $\mathbf{v} = (i^2 - 4i)i + (6i - 24)j$

9 a $\mathbf{k} = -0.5, -8.5$

10 a $((3i^2 - 3i + 2)i + (6i - 24)j$

11 a $((i^2 + 6)i + (2i - \frac{1}{3})j) m$

12 b $(1 = \frac{1}{2})$ c $(-\frac{1}{3}) m s^{-1}$

13 c $(-\frac{1}{3}) m s^{-1}$

14 a $(-\frac{1}{3}) m s^{-1}$ c $(-\frac{1}{3}) m s^{-1}$

15 a $(-\frac{1}{3}) m s^{-1}$ c $(-\frac{1}{3}) m s^{-1}$

16 a $(-\frac{1}{3}) m s^{-1}$ c $(-\frac{1}{3}) m s^{-1}$

17 a $(-\frac{1}{3}) m s^{-1}$ c $(-\frac{1}{3}) m s^{-1}$

18 a $(-\frac{1}{3}) m s^{-1}$ c $(-\frac{1}{3}) m s^{-1}$

8=Y Egl a= 2-2t (a) V = \[\adt = \int 2 - 2t dt \] V = 2t - + c When to, V: 8 -. C= 8 V= 26-6+8 5= JV dt = 526-6+8 5 = 12 - 1 t3 + 8t + c Blá When E=0, 500 .. C=0 5= t-16 + 8t (b) particle Changes direction when V=0 E-26-8:0 Now @ E=4, S= 4 - 14 + 8(4) = 263 m < AB (C) time when 5:0 t [t-1t2+8]=0 etter 650 or 1t -t-8=0 t = 6.6 sec (d) total det = 2×263 = 533 M.

$$F = Ma$$

$$7 = 35.24$$

$$V = \frac{1}{4} = 6 C_0 24$$

$$4t$$

$$a = \frac{1}{4} = -12 S_0 24$$

$$E = \frac{\pi}{4}, \quad a = -12 S_0 \left(2\pi\right) = -605$$

$$F = 0.2 \times -603 = -603$$

$$F = 6.03 N$$

Eg3
$$V = \begin{pmatrix} 3k \\ \frac{1}{2}k^2 \end{pmatrix}$$

$$\frac{\Gamma = \begin{pmatrix} 3t^{2} \\ \frac{1}{6}t^{3} \end{pmatrix} + \begin{pmatrix} A \\ B \end{pmatrix}$$

$$\begin{array}{c|c}
\vdots & \int z & 3z^{2} + 2 \\
\hline
1 & 1 & 2
\end{array}$$

$$\begin{array}{c|c}
\hline
1 & 1 & 2 & 3 & 2 \\
\hline
2 & 2 & 3 & 2
\end{array}$$

(b)
$$Q = dv = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Egy
$$q = \begin{pmatrix} 4 \\ -2t \end{pmatrix}$$

(a) for direction of Motion, near V
 $V = \begin{cases} 4t \\ -t^2 \end{cases} + \begin{pmatrix} A \\ B \end{pmatrix}$

what $t = 3$, $V = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

(b) $t = 3$, $t = 3$

(c) $t = 3$

(d) $t = 3$

(e) $t = 3$

(f) $t = 3$

(g) $t = 3$

agy
$$f = \begin{pmatrix} 3t^2 - t^3 \\ 2 - 3t \end{pmatrix}$$
 $2t^2 - 3t \end{pmatrix}$

(a) when moving parallel to t , t , gargonard of t =0

 $t = \frac{1}{4t}$

(b) Newl $t = \frac{1}{4t}$
 $t = \frac{$

(b)
$$Y = (3k^{2} - 8)$$

(a) $V = (3k^{2} - 8)$
 $V = (3k^{2} - 8)$
 $V = (4^{2} - 8k) + (A)$
 $V = (4^{2} - 8k) + (A)$

Exercise 5.1

At time t seconds, a particle P has position vector \mathbf{r} m with respect to a fixed origin O, where $\mathbf{r} = (3t - 4)\mathbf{i} + (t^3 - 4t)\mathbf{j}$.

Find

- **a** the velocity of *P* when t = 3.
- **b** the acceleration of *P* when t = 3.
- A particle *P* is moving in a plane with velocity $\mathbf{v} \cdot \mathbf{m} \cdot \mathbf{s}^{-1}$ at time *t* seconds where $\mathbf{v} = t^2 \mathbf{i} + (2t 3)\mathbf{i}$.

When t = 0, P has position vector $(3\mathbf{i} + 4\mathbf{j})$ m with respect to a fixed origin O. Find

- a the acceleration of P at time t seconds,
- **b** the position vector of P when t = 1.
- A particle *P* starts from rest at a fixed origin *O*. The acceleration of *P* at time *t* seconds (where $t \ge 0$) is $(6t^2\mathbf{i} + (8 4t^3)\mathbf{j}) \, \text{m s}^{-2}$. Find
 - **a** the velocity of P when t = 2,
 - **b** the position vector of P when t = 4.
- At time t seconds, a particle P has position vector \mathbf{r} m with respect to a fixed origin O, where $\mathbf{r} = 4t^2\mathbf{i} + (24t 3t^2)\mathbf{j}$.
 - **a** Find the speed of P when t = 2.
 - **b** Show that the acceleration of *P* is a constant and find the magnitude of this acceleration.
- A particle P is initially at a fixed origin O. At time t = 0, P is projected from O and moves so that, at time t seconds after projection, its position vector \mathbf{r} m relative to O is given by

$$\mathbf{r} = (t^3 - 12t)\mathbf{i} + (4t^2 - 6t)\mathbf{j}, t \ge 0.$$

Find

- a the speed of projection of P,
- b the value of t at the instant when P is moving parallel to j,
- c the position vector of P at the instant when P is moving parallel to j.
- At time t seconds, the force **F** newtons acting on a particle P, of mass 0.5 kg, is given by $\mathbf{F} = 3t\mathbf{i} + (4t 5)\mathbf{j}$.

When t = 1, the velocity of P is $12i \text{ m s}^{-1}$. Find

- a the velocity of P after t seconds,
- **b** the angle the direction of motion of P makes with **i** when t = 5, giving your answer to the nearest degree.

7 A particle P is moving in a plane with velocity \mathbf{v} m s⁻¹ at time t seconds where

$$\mathbf{v} = (3t^2 + 2)\mathbf{i} + (6t - 4)\mathbf{j}.$$

When t = 2, P has position vector $9\mathbf{j}$ m with respect to a fixed origin O. Find

- **a** the distance of P from O when t = 0,
- **b** the acceleration of P at the instant when it is moving parallel to the vector **i**.
- At time t seconds, the particle P is moving in a plane with velocity \mathbf{v} m s⁻¹ and acceleration \mathbf{a} m s⁻², where

$$\mathbf{a} = (2t - 4)\mathbf{i} + 6\mathbf{j}.$$

Given that P is instantaneously at rest when t = 4, find

- a v in terms of t,
- **b** the speed of P when t = 5.
- A particle *P* is moving in a plane. At time *t* seconds, the position vector of *P*, **r** m, is given by $\mathbf{r} = (3t^2 6t + 4)\mathbf{i} + (t^3 + kt^2)\mathbf{j}$, where *k* is a constant.

When t = 3, the speed of P is $12\sqrt{5}$ m s⁻¹.

- a Find the two possible values of k.
- **b** For both of these values of k, find the magnitude of the acceleration of P when t = 1.5.
- 10 At time t seconds (where $t \ge 0$), the particle P is moving in a plane with acceleration $\mathbf{a} \le \mathbf{m} \le 1$, where

$$\mathbf{a} = (5t - 3)\mathbf{i} + (8 - t)\mathbf{j}$$

When t = 0, the velocity of P is $(2\mathbf{i} - 5\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. Find

- a the velocity of P after t seconds,
- **b** the value of t for which P is moving parallel to i j,
- c the speed of P when it is moving parallel to i j.
- At time t seconds (where $t \ge 0$), a particle P is moving in a plane with acceleration $(2\mathbf{i} 2t\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-2}$. When t = 0, the velocity of P is $2\mathbf{j}\,\mathrm{m}\,\mathrm{s}^{-1}$ and the position vector of P is $6\mathbf{i}\,\mathrm{m}$ with respect to a fixed origin P.
 - a Find the position vector of P at time t seconds.

At time t seconds (where $t \ge 0$), a second particle Q is moving in the plane with velocity $((3t^2-4)\mathbf{i}-2t\mathbf{j})\,\mathrm{m}\,\mathrm{s}^{-1}$. The particles collide when t=3.

- **b** Find the position vector of Q at time t = 0.
- A particle *P* of mass 0.2 kg is at rest at a fixed origin *O*. At time *t* seconds, where $0 \le t \le 3$, a force $(2t\mathbf{i} + 3\mathbf{j})$ N is applied to *P*.

a Find the position vector of P when t = 3.

When t = 3, the force acting on P changes to $(6\mathbf{i} + (12 - t^2)\mathbf{j})$ N, where $t \ge 3$.

b Find the velocity of P when t = 6.

(a)
$$V = dc = \begin{pmatrix} 3 \\ 3t^2 - 4 \end{pmatrix}$$

(b)
$$\Gamma = \int V dt = (3t^3) + (A) (3)$$

$$a = 1 = \frac{1}{3} = \frac{10}{3}$$

3
$$a = (6t^2)$$

(a) $V : \int adt : (2t^2) + (A)$

(b) $a = \int v dt : (2t^2) + (A) + (A)$

(c) $a = \int v dt : (2t^2) + (A) + (A)$

(d) $a = \int v dt : (A) = (A) + (A)$

(e) $a = \int v dt : (A) = (A) + (A)$

(f) $a = \int v dt : (A) = (A) = (A) + (A)$

(g) $a = \int v dt : (A) = (A) =$

(b) cot ...
$$V = (3\xi^{2} + 9)$$
 $(4\xi^{2} + 10\xi + 6)$
 $(5\xi^{2} + 9)$
 $(5\xi^{2}$

(a)
$$V = \int a dt = \left(\frac{t^2 - 4t}{6t}\right) + \left(\frac{\Delta}{B}\right)$$

when
$$t=4$$
, $V=\begin{pmatrix}0\\0\end{pmatrix}$

$$\begin{pmatrix}
A \\
B
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix} - \begin{pmatrix}
0 \\
24
\end{pmatrix}$$

(a)
$$V = \int a dt = \left(\frac{5t^2 - 3t}{2} + \frac{A}{3}\right)$$

 $\left(\frac{8t - t^2}{2}\right)$

$$(2)$$
 (2) (3) (2) (4) (5) (5)

(c)
$$Q = t = 0.T$$
 $V = \int_{2}^{2} (6.T)^{2} - 3(0.T) + 2 = \int_{2}^{2} (1.12T) + 2 = \int_{2}^{2} (1.12T) + 2 = \int_{2}^{2} (0.T)^{2} - T = \int_{2}^{2} (0.T)$

(a)
$$V = \int_{-2k}^{2k} adk = \frac{2k}{k^2} + \frac{2k}{3}$$

When $V = \begin{pmatrix} 2k \\ 2-k^2 \end{pmatrix}$

Now $V = \begin{pmatrix} 2k \\ 2-k^2 \end{pmatrix}$

When $V = \begin{pmatrix} 2k \\ 2-k^2 \end{pmatrix}$

When $V = \begin{pmatrix} 2k \\ 2k-1k^3 \end{pmatrix} + \begin{pmatrix} A \\ B \end{pmatrix}$

When $V = \begin{pmatrix} 2k \\ 2k-1k^3 \end{pmatrix}$

(b) $V_0 = \begin{pmatrix} 3k^2-4 \\ 2k-2k^3 \end{pmatrix}$

Substituting the position position of V_0 and V_0 and

(II(b) cot (A):
$$(\frac{17}{3}) = (\frac{17}{7}) = (\frac{17}{6})$$

(II(b) cot (A): $(\frac{17}{3}) = (\frac{17}{7}) = (\frac{17}{6})$

(II) $= (\frac{17}{6-4})$

(III) $= (\frac{17$