C3 - Functions Homework (Due 09/03/16)

The function f has domain $(-\infty, \infty)$ and is defined by $f(x) = e^x$.

The function g has domain $(2, \infty)$ and is defined by $g(x) = \ln(x^2 - 4)$.

(b) Solve the equation
$$fg(x) = 5$$
. [4]

11. The functions f and g have domains $(0, \infty)$ and $(0, \frac{\pi}{4}]$ respectively and are defined by

$$f(x) = \ln x$$
,
 $g(x) = \tan x$.

- (a) (i) Write down the domain of fg.
 - (ii) Write down the range of fg. [3]
- (b) Solve the equation fg(x) = -0.4. Give your answer correct to two decimal places.
 - (ii) Giving a reason, write down a value for k so that fg(x) = k has no solution. [3]

8. The function f has domain $[-1, \infty)$ and is defined by

$$f(x) = \ln(4x + 5) - 2.$$

- (a) Find an expression for $f^{-1}(x)$.
- (b) State the domain of f^{-1} . [1]

10. The function f has domain $(-\infty, 10]$ and is defined by

$$f(x) = e^{5-\frac{x}{2}} + 6.$$

- (a) Find an expression for $f^{-1}(x)$.
- (b) Write down the domain of f^{-1} . [2]

(a) The functions f and g have domains $(-\infty, \infty)$ and $(0, \infty)$ respectively and are defined by

$$f(x) = x^2 - 25,$$

 $g(x) = 2x - 3.$

- (i) Write down the domain of fg.
- (ii) Write down the range of fg.
- (iii) Write down an expression for fg(x).
- (iv) Solve the equation fg(x) = 0.

(b) The function h is defined by

$$h(x) = \frac{2x+7}{5x-2}.$$

- (i) Show that hh(x) = x.
- (ii) **Hence** write down an expression for $h^{-1}(x)$.

[3]

[7]

[4]

[4]

- (b) (i) Sketch the graph of y = |x|.
 - (ii) The diagram below shows a sketch of the graph of $y = a \mid x + b \mid$, where a and b are constants. The graph meets the x-axis at the point (4, 0) and the y-axis at the point (0, -8).

Find the value of a and the value of b.

[3]

4

9. The diagram shows a sketch of the graph of y = f(x). The graph passes through the points (-1, 0) and (7, 0) and has a minimum point at (3, -6).

Sketch the graph of $y = -\frac{2}{3}f(x+4)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis. [3]