15. (a) A vertical post AB is 15 m from a point C on horizontal ground. The angle of elevation of the top of the post from the point C is 67°. Calculate the height of the post.

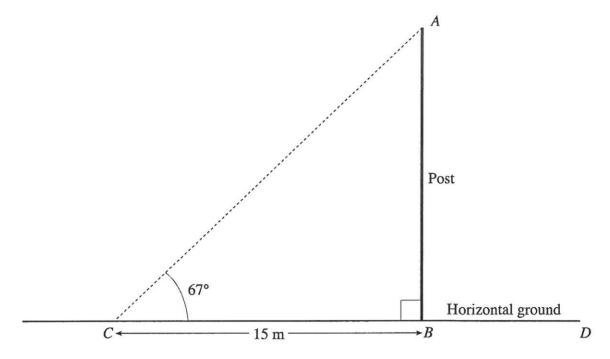


Diagram not drawn to scale.

[3]

(b) A ladder, 21 m long, is placed against a vertical wall. The foot of the ladder is 13 m from the wall on horizontal ground. Calculate the angle which the ladder makes with the horizontal.

[3]

10. In the diagram ABC is a straight line and BDE is a straight line perpendicular to it. It is given that AD = 36 m, BC = 49 m, $D\overrightarrow{AB} = 43^{\circ}$ and $\overrightarrow{ECB} = 54^{\circ}$.

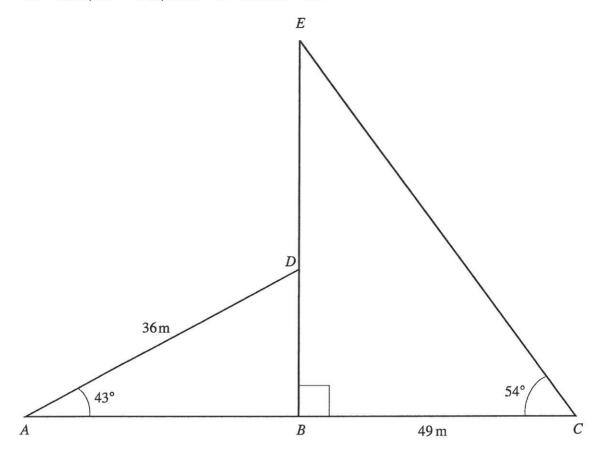


Diagram not drawn to scale.

Calculate the length of DE .

10. A building stands on the horizontal ground ABC. The point E is 23 metres below the top of the building along the vertical face, DEB. The point C is 46 m from the point B. The angle of elevation of the point E from the point C is 37° .

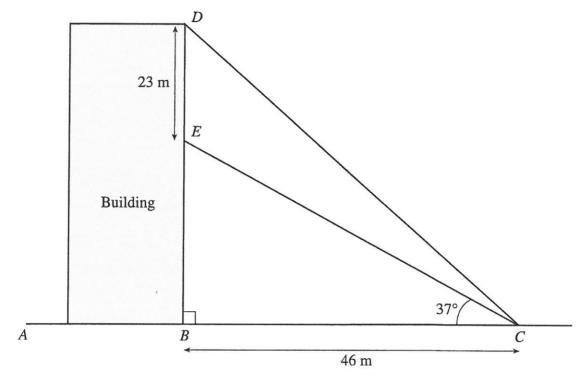


Diagram not drawn to scale.

(a)	Calculate the height of the building.	
•••••		
		[3]
(b)	Calculate the angle of elevation of the top of the building from the point C .	
(b)	Calculate the angle of elevation of the top of the building from the point C .	
(b)	Calculate the angle of elevation of the top of the building from the point C .	
(b)	Calculate the angle of elevation of the top of the building from the point C .	
(b)	Calculate the angle of elevation of the top of the building from the point C .	

13. (a) From a harbour a yacht sails 4·1 km North. It then sails 7·7 km East before dropping the anchor. Calculate the bearing of the yacht from the harbour.

••••••
•••••
[5]