[3]

15. (a) A vertical post AB is 15 m from a point C on horizontal ground. The angle of elevation of the top of the post from the point C is 67°. Calculate the height of the post.

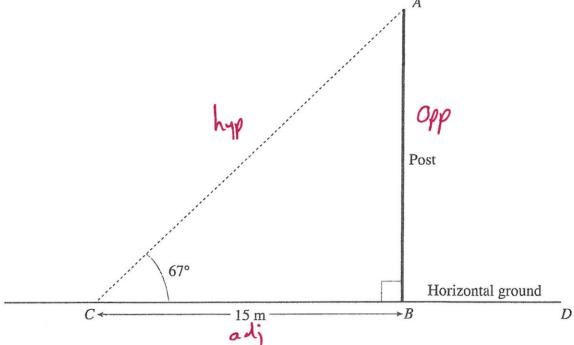
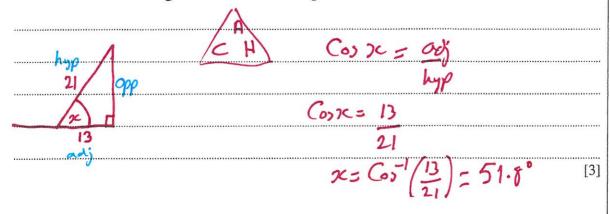



Diagram not drawn to scale.

TA	opp = tan 67 x adj	*
	AB = tan 67 x 15	
	= 35.3 m	

(b) A ladder, 21 m long, is placed against a vertical wall. The foot of the ladder is 13 m from the wall on horizontal ground. Calculate the angle which the ladder makes with the horizontal.

10. In the diagram ABC is a straight line and BDE is a straight line perpendicular to it. It is given that AD = 36 m, BC = 49 m, $D\overrightarrow{AB} = 43^{\circ}$ and $\overrightarrow{ECB} = 54^{\circ}$.

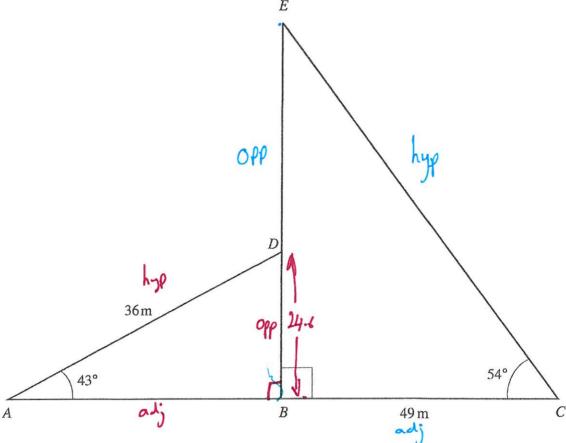


Diagram not drawn to scale.

Calculate the length of DE.

^	opp = Sin 43 x hyp	
5 H	DB = 51243 x 36	
	=24.6M	

TOA			tan 54 >				
	BE		454 x	U			
		-	67.4m	V			

So DE = 67.4-24.6= 42.8m

[6]

18.

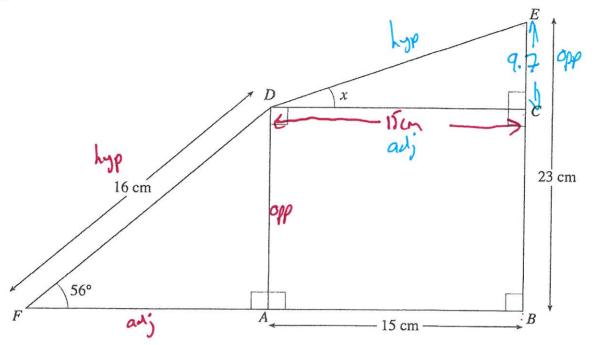


Diagram not drawn to scale.

Find the size of the angle marked x in the above diagram.

78	00p= 51'256x h	/m\
	DA = SINSEX K	/5 H
	= 13.3 cm	
	So C∈ = 23-13.3 = 9:	50
•	Yarx = opp	10
	ad	
	luxes 9.7	
	15	
(9.7) = 32.9°	2= far'	
[6		

10. A building stands on the horizontal ground ABC. The point E is 23 metres below the top of the building along the vertical face, DEB. The point C is 46 m from the point B. The angle of elevation of the point E from the point E is 37°.

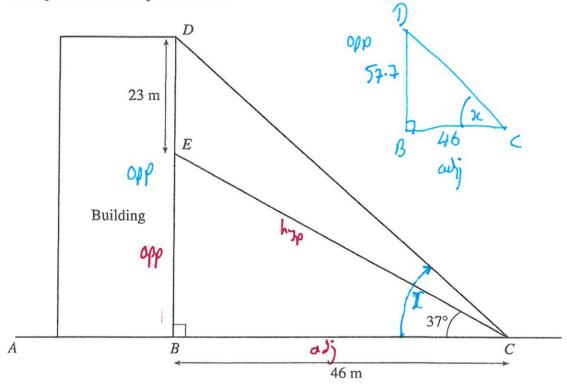
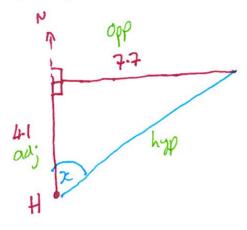


Diagram not drawn to scale.


(a) Calculate the height of the building.

000 =	tan 37 x adj
TA BE=	ton 37 x 46
5	34.7M
height of building	=34.7+23=57.7m
T .	
	[3]

(b) Calculate the angle of elevation of the top of the building from the point C.

	Torse = opp				
TA	adj				
	Tank = 57.7				
	46				
	x:Tan"	(57.7)	<u></u>	51.4	
		46/			[3]

13. (a) From a harbour a yacht sails 4·1 km North. It then sails 7·7 km East before dropping the anchor. Calculate the bearing of the yacht from the harbour.

TA Ton x = ofp adj

Tux = 7.7

Marc = tai'(7.7) = 64. 62.0°

Bearing 062°

[5]