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1.

A particle P is moving with constant velocity (=3i+2j)ms™. At time ¢ = 6; Pis atAthe
point with position vector (—4i—7j)m. Find the distance of P from the origin at time
t=2s.

(5)

[
| .
} 1. A particle P moves with constant acceleration (2i — 5j) m s 2 At time ¢ = 0, P has
1 speed #m s™'. Attime 7 =3 s, P has velocity (6i + j) m s,
|
| ind the value of u.
E Find the valu 5)
|
6. [in this question, the unit vectors i and j are due east and due north respectively.]
A particle P is moving with constant velocity (-5i + 8j) m s™.. Find
(a) the speed of P,
(2)
(b) the direction of motion of 2, giving your answer as a bearing,
(3)

At time £ =0, P is at the point 4 with position vector (7i — 10j) m relative to a fixed

origin 0. When t = 3 s, the velocity of P changes and it moves with velocity
(ui + vj) m s™, where u and v are constants. Afier a further 4 s, it passes through O and
continues to move with velocity (i + vj) m s~

(¢) Find the values of u and v.
(5)

(d) Find the total time taken for £ to move from A to a position which is due south of
A,

3

|
|

Leave |
blank

blank

| Leave |
| blank |

7. Un this question, i and j are horizontal unit vectors due east and due north respectively

and position veclors are given with respect to a fixed origin.]

A ship S'is moving along a straight line with constant veloci

ty. At time 7 hours the position

vector of S'is s km. When =0, $=9i—6j. When =4, s=21i+ 10j. Find

(a) the speed of S,

@

(b) the direction in which S is moving, giving your answer as a bearing.

(c) Show that s=(3+9)i+ (47 —6)j.

@)

2

A lighthouse L is located at the point with position vector (18i+ 6j)km. When ¢ = T , the

ship S'is 10km from L.

(d) Find the possible values of 7.

(6)

{ blank
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8.

[in this question, the unit vectors i and i are horizontal vectors due east and north
respectively. |

At time ¢ = 0, a football player kicks a ball from the point A with position vector (2i + j) mon
a horizontal football field. The motion of the ball is modelled as that of a particle moving
horizontally with constant velocity (5i + 8j) m s™'. Find

(a) the speed of the ball,

2)
(b) the position vector of the ball after ¢ seconds.

2)
The point B on the field has position vector (10i + 7j) m.
(¢) Find the time when the ball is due north of B.

2)

At time ¢ = 0, another player starts running due north from B and moves with constant speed
vm s . Given that he intercepts the ball,

(d) find the value of v.
(6)

(e) State one physical factor, other than air resistance, which would be needed in a
refinement of the model of the ball’s motion to make the model more realistic.
(1

Leave
blank

8. [In this question | and j are horizontal unit veciors due east and due north respectively.]
A hiker H is walking with constant velocity (1.2i — 0.9j) m s~

(a) Find the speed of H.
@)
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Figure 3

A horizontal field QABC is rectangular with OA due east and OC due north, as shown in
Figure 3. At twelve noon hiker / is at the peint ¥ with position vector 100 j m, relative to
the fixed origin O.

(b) Write down the position vector of H at time ¢ seconds after noon.

(2)

At noon, another hiker X is at the point with position vector (9i + 46j) m. Hiker X is
moving with constant velocity (0.75i + 1.8j) m s\,

(c) Show that, at time ¢ seconds after noon,
HK = [(9-0.45t)i+ (2.7t —54) j ] metres.
)
Hence,
(d) show that the two hikers meet and find the position vector of the point where they

meet.
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